R.SmaI cleavage map of the transfer region of the E. coli K12 sex factor F. 1979

N Willetts, and G Johnson

UI MeSH Term Description Entries
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005144 F Factor A plasmid whose presence in the cell, either extrachromosomal or integrated into the BACTERIAL CHROMOSOME, determines the "sex" of the bacterium, host chromosome mobilization, transfer via conjugation (CONJUGATION, GENETIC) of genetic material, and the formation of SEX PILI. Resistance Transfer Factor,Sex Factor F,Sex Factor, Bacterial,Bacterial Sex Factor,Bacterial Sex Factors,F Plasmid,F Plasmids,Factor, Bacterial Sex,Factors, Bacterial Sex,Fertility Factor, Bacterial,Sex Factors, Bacterial,Bacterial Fertility Factor,Bacterial Fertility Factors,F Factors,Factor F, Sex,Factor Fs, Sex,Factor, Bacterial Fertility,Factor, F,Factor, Resistance Transfer,Factors, Bacterial Fertility,Factors, F,Factors, Resistance Transfer,Fertility Factors, Bacterial,Fs, Sex Factor,Plasmid, F,Plasmids, F,Resistance Transfer Factors,Sex Factor Fs,Transfer Factor, Resistance,Transfer Factors, Resistance
D001287 Attachment Sites, Microbiological Specific loci on both the bacterial DNA (attB) and the phage DNA (attP) which delineate the sites where recombination takes place between them, as the phage DNA becomes integrated (inserted) into the BACTERIAL DNA during LYSOGENY. Attachment Sites (Microbiology),Bacterial Attachment Sites,Phage Attachment Sites,Att Attachment Sites,AttB Attachment Sites,AttP Attachment Sites,Attachment Site (Microbiology),Attachment Site, Bacterial,Attachment Sites, Bacterial,Bacterial Attachment Site,Microbiologic Attachment Site,Microbiologic Attachment Sites,Att Attachment Site,AttB Attachment Site,AttP Attachment Site,Attachment Site, Att,Attachment Site, AttB,Attachment Site, AttP,Attachment Site, Microbiologic,Attachment Site, Microbiological,Attachment Site, Phage,Attachment Sites, Att,Attachment Sites, AttB,Attachment Sites, AttP,Attachment Sites, Microbiologic,Attachment Sites, Phage,Microbiological Attachment Site,Microbiological Attachment Sites,Phage Attachment Site

Related Publications

N Willetts, and G Johnson
October 1966, Genetical research,
N Willetts, and G Johnson
December 1975, Genetical research,
N Willetts, and G Johnson
May 1976, Nature,
N Willetts, and G Johnson
July 1979, Molecular & general genetics : MGG,
N Willetts, and G Johnson
April 1991, Molecular & general genetics : MGG,
Copied contents to your clipboard!