Conformational features of DNA containing a cis-syn photodimer. 1990

G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
Department of Biophysics, Roswell Park Memorial Institute, Buffalo, NY 14263.

In an effort to understand the conformational and structural changes in DNA brought about by thymine photodimer, computer modeling and molecular mechanics energy calculations were performed on DNA hexamer and dodecamer duplexes containing a cis-syn photodimer. The conformation of the crystal structure of the cyanoethyl phosphate ester of the thymine dimer (Hruska et al., Biopolymers 25, 1399-1417 (1986)) was used in modeling the photodimer portion. Various starting conformations were used in the modeling procedure and the structures were minimized both retaining and later relaxing the crystallographic geometry of the cyclobutane ring. The results indicate that most of the deformation is restricted to the thymine dimer region, and that the conformational changes decrease rapidly on either side of the region containing the photodimer. The structural changes brought about by the introduction of the photodimer can be accommodated within six base paired duplex without significant bend in the DNA. More conformational changes are observed on the 5'-side of the photodimer than on the 3'-side. The conformational features, such as backbone torsion angles and sugar puckers, of the energy minimized structures are discussed in the context of the solution structures determined by NMR on a series of oligomers containing photodimers (Rycyna et al., Biochemistry 27, 3152-3163 (1988)).

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011067 Poly dA-dT Polydeoxyribonucleotides made up of deoxyadenine nucleotides and thymine nucleotides. Present in DNA preparations isolated from crab species. Synthetic preparations have been used extensively in the study of DNA. Poly(Deoxyadenylate-Thymidylate),Polydeoxyadenine Nucleotides-Polythymine Nucleotides,Poly dA dT,Poly(dA-dT),d(A(5)T(5))2,Nucleotides, Polydeoxyadenine Nucleotides-Polythymine,Nucleotides-Polythymine Nucleotides, Polydeoxyadenine,Polydeoxyadenine Nucleotides Polythymine Nucleotides,dA dT, Poly,dA-dT, Poly,dT, Poly dA
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
February 1992, Journal of biomolecular structure & dynamics,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
September 1971, Journal of the American Chemical Society,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
September 1970, Acta crystallographica. Section B: Structural crystallography and crystal chemistry,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
December 2002, Proceedings of the National Academy of Sciences of the United States of America,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
May 1985, Biopolymers,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
July 2004, Journal of fluorescence,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
August 2017, Chemical communications (Cambridge, England),
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
February 2006, The Journal of organic chemistry,
G Raghunathan, and T Kieber-Emmons, and R Rein, and J L Alderfer
October 1998, Journal of molecular biology,
Copied contents to your clipboard!