Receptor specificity and erythrocyte binding preferences of avian influenza viruses isolated from India. 2012

Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
National Institute of Virology (NIV)-Microbial Containment Complex (MCC), 130/1, Sus Road, Pashan, Pune 411021, India.

BACKGROUND Hemagglutination (HA) and hemagglutination inhibition (HI) assays are conventionally used for detection and identification of influenza viruses. HI assay is also used for detection of antibodies against influenza viruses. Primarily turkey or chicken erythrocytes [red blood cells (RBCs)] are used in these assays, as they are large, nucleated, and sediment fast, which makes it easy to determine the titer. Human influenza viruses agglutinate RBCs from chicken, human, and guinea pig, but not from horse. Human influenza viruses bind preferentially to sialic acid (SA) linked to galactose (Gal) by α 2, 6 linkage (SA α 2, 6-Gal), whereas avian influenza (AI) viruses bind preferentially to SA α 2, 3-Gal linkages. With this background, the present study was undertaken to study erythrocyte binding preferences and receptor specificities of AI viruses isolated from India. METHODS A total of nine AI virus isolates (four subtypes) from India and three reference AI strains (three subtypes) were tested in HA and HI assays against mammalian and avian erythrocytes. The erythrocytes from turkey, chicken, goose, guinea pig and horse were used in the study. The receptor specificity determination assays were performed using goose and turkey RBCs. The amino acids present at 190 helix, 130 and 220 loops of the receptor-binding domain of the hemagglutinin protein were analyzed to correlate amino acid changes with the receptor specificity. RESULTS All tested highly pathogenic avian influenza (HPAI) H5N1 viruses reacted with all five types of RBCs in the HA assay; AI H9N2 and H5N2 viruses did not react with horse RBCs. For H5N1 viruses guinea pig and goose RBCs were best for both HA and HI assays. For H9N2 viruses, guinea pig, fowl and turkey RBCs were suitable. For other tested AI subtypes, avian and guinea pig RBCs were better. Eight isolates of H5N1, one H4N6 and one H7N1 virus showed preference to avian sialic acid receptors. Importantly, two isolates of HPAI H5N1, H9N2 and H11N1 viruses showed receptor specificity preference to both avian and mammalian sialic acid (α-2, 3 and α-2, 6) receptors. CONCLUSIONS Use of different types of RBCs resulted in titer variations in HA and HI assays. This showed that RBCs giving optimum HA and HI titers would increase sensitivity of detection and would be more appropriate for identification and antigenic analysis of AI viruses. Analysis of 16 amino acids in the receptor-binding domain of the hemagglutinin of HPAI H5N1 viruses revealed that the only variation observed was in S221P amino acid position. Two H5N1 viruses showed S221P amino acid change, out of which only one H5N1 virus showed preference to α 2, 6 sialic acid receptor. One H5N1 virus isolate with amino acid S at 221 position, showed preference to α 2,3 as well as α 2,6 sialic acid receptors. This indicated that factor(s) other than S221P mutation in the hemagglutinin are probably involved in determining receptor specificity of H5N1 viruses. This is the first report of receptor specificity and erythrocyte binding preferences of AI viruses from India.

UI MeSH Term Description Entries
D007194 India A country in southern Asia, bordering the Arabian Sea and the Bay of Bengal, between Burma and Pakistan. The capitol is New Delhi. Republic of India
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005777 Geese Any of various large waterfowl in the order Anseriformes, especially those of the genera Anser (gray geese) and Branta (black geese). They are larger than ducks but smaller than swans, prefer FRESH WATER, and occur primarily in the northern hemisphere. Goose,Gooses
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006385 Hemagglutination Inhibition Tests Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination. Hemagglutination Inhibition Test,Inhibition Test, Hemagglutination,Inhibition Tests, Hemagglutination,Test, Hemagglutination Inhibition,Tests, Hemagglutination Inhibition
D006386 Hemagglutination Tests Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed) Hemagglutination Test,Test, Hemagglutination,Tests, Hemagglutination
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
July 2007, Journal of clinical microbiology,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
January 2008, Archives of virology,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
January 2022, Methods in molecular biology (Clifton, N.J.),
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
September 2022, International journal of molecular sciences,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
January 2003, Avian diseases,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
January 2022, Methods in molecular biology (Clifton, N.J.),
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
February 2016, Microbial pathogenesis,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
September 2018, Virology,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
May 2015, Journal of virology,
Shailesh D Pawar, and Saurabh S Parkhi, and Santosh S Koratkar, and Akhilesh C Mishra
November 2014, PLoS pathogens,
Copied contents to your clipboard!