Ischemia-reperfusion injury in isolated rat hindquarters. 1990

W L Sexton, and R J Korthuis, and M H Laughlin
Department of Veterinary Biomedical Sciences, University of Missouri, Columbia 65211.

The purpose of this study was to determine the suitability of the maximally vasodilated (papaverine) isolated rat hindquarters preparation to study the effects of ischemia and reperfusion on the microvasculature of skeletal muscle. The osmotic reflection coefficient for plasma proteins (sigma) and total vascular resistance (RT, mmHg.ml-1.min.100 g-1) were determined before ischemic periods of 30, 60, 120, 180, and 240 min in intact (with skin) and 30, 60, and 120 min in skinned hindquarters and again after 60 min of reperfusion. In both intact and skinned hindquarters, reductions in sigma and increases in RT were observed during reperfusion and were correlated with the ischemic period duration. After 120 min of ischemia in intact and skinned hindquarters, sigma was reduced from preischemia values of 0.92 +/- 0.02 and 0.89 +/- 0.02 to 0.61 +/- 0.03 and 0.57 +/- 0.03, respectively, whereas RT was increased from preischemia levels of 8.9 +/- 0.3 and 8.1 +/- 0.1 to 28.4 +/- 2.9 and 74.2 +/- 16.8, respectively. The increases in RT were associated with proportional increases in skeletal muscle vascular resistance. Thus, in isolated rat hindquarters, increasing the duration of ischemia results in progressive increases in the permeability to plasma proteins (decreased sigma) and RT, which are associated primarily with skeletal muscle.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D007869 Leg Injuries General or unspecified injuries involving the leg. Injuries, Leg,Injury, Leg,Leg Injury
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic

Related Publications

W L Sexton, and R J Korthuis, and M H Laughlin
October 1997, Anesthesia and analgesia,
W L Sexton, and R J Korthuis, and M H Laughlin
October 1988, The American journal of physiology,
W L Sexton, and R J Korthuis, and M H Laughlin
November 2022, Tissue engineering. Part A,
W L Sexton, and R J Korthuis, and M H Laughlin
May 2010, Chinese medical journal,
W L Sexton, and R J Korthuis, and M H Laughlin
October 2023, Cardiovascular drugs and therapy,
W L Sexton, and R J Korthuis, and M H Laughlin
June 1987, The American journal of physiology,
W L Sexton, and R J Korthuis, and M H Laughlin
July 1993, Japanese heart journal,
W L Sexton, and R J Korthuis, and M H Laughlin
May 2020, Cell death & disease,
W L Sexton, and R J Korthuis, and M H Laughlin
August 2006, Zhonghua xin xue guan bing za zhi,
Copied contents to your clipboard!