Direct sequencing of double-stranded DNA PCR products via removing the complementary strand with single-stranded DNA of an M13 clone. 1990

S Gal, and B Hohn
Friedrich Miescher-Institute, Basel, Switzerland.

UI MeSH Term Description Entries
D009029 Mosaic Viruses Viruses which produce a mottled appearance of the leaves of plants. Mosaic Virus,Virus, Mosaic,Viruses, Mosaic
D001937 Brassica A plant genus of the family Cruciferae. It contains many species and cultivars used as food including cabbage, cauliflower, broccoli, Brussel sprouts, kale, collard greens, MUSTARD PLANT; (B. alba, B. junica, and B. nigra), turnips (BRASSICA NAPUS) and rapeseed (BRASSICA RAPA). Broccoli,Brussel Sprout,Cabbage,Cauliflower,Collard Green,Kale,Cabbages,Collard Greens
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D021141 Nucleic Acid Amplification Techniques Laboratory techniques that involve the in-vitro synthesis of many copies of DNA or RNA from one original template. DNA Amplification Technic,DNA Amplification Technique,DNA Amplification Techniques,Nucleic Acid Amplification Technic,Nucleic Acid Amplification Technique,RNA Amplification Technic,RNA Amplification Technique,RNA Amplification Techniques,Amplification Technics, Nucleic Acid,Amplification Techniques, Nucleic Acid,DNA Amplification Technics,Nucleic Acid Amplification Technics,Nucleic Acid Amplification Test,Nucleic Acid Amplification Tests,RNA Amplification Technics,Technics, Nucleic Acid Amplification,Techniques, Nucleic Acid Amplification,Amplification Technic, DNA,Amplification Technic, RNA,Amplification Technics, DNA,Amplification Technics, RNA,Amplification Technique, DNA,Amplification Technique, RNA,Amplification Techniques, DNA,Amplification Techniques, RNA,Technic, DNA Amplification,Technic, RNA Amplification,Technics, DNA Amplification,Technics, RNA Amplification,Technique, DNA Amplification,Technique, RNA Amplification,Techniques, DNA Amplification,Techniques, RNA Amplification

Related Publications

S Gal, and B Hohn
April 1996, Molecular biotechnology,
S Gal, and B Hohn
January 1993, Methods in molecular biology (Clifton, N.J.),
S Gal, and B Hohn
September 1994, BioTechniques,
S Gal, and B Hohn
February 1997, Nucleic acids research,
S Gal, and B Hohn
January 1996, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!