Mammalian mitochondrial endonuclease activities specific for ultraviolet-irradiated DNA. 1990

A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
Department of Biochemistry, University of California, Berkeley 94720.

Mitochondrial forms of uracil DNA glycosylase and UV endonuclease have been purified and characterized from the mouse plasmacytoma cell line, MPC-11. As in other cell types, the mitochondrial uracil DNA glycosylase has properties very similar to those of the nuclear enzyme, although in this case the mitochondrial activity was also distinguishable by extreme sensitivity to dilution. Three mitochondrial UV endonuclease activities are also similar to nuclear enzymes; however, the relative amounts of these enzyme activities in the mitochondria is significantly different from that in the nucleus. In particular, mitochondria contain a much higher proportion of an activity analogous to UV endonuclease III. Nuclear UV endonuclease III activity is absent from XP group D fibroblasts and XP group D lymphoblasts have reduced, but detectable levels of the mitochondrial form of this enzyme. This residual activity differs in its properties from the normal mitochondrial form of UV endonuclease III, however. The presence of these enzyme activities which function in base excision repair suggests that such DNA repair occurs in mitochondria. Alternatively, these enzymes might act to mark damaged mitochondrial genomes for subsequent degradation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D010954 Plasmacytoma Any discrete, presumably solitary, mass of neoplastic PLASMA CELLS either in BONE MARROW or various extramedullary sites. Plasma Cell Tumor,Plasmocytoma,Plasma Cell Tumors,Plasmacytomas,Plasmocytomas,Tumor, Plasma Cell,Tumors, Plasma Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
October 1972, Nature: New biology,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
January 1971, Biochimica et biophysica acta,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
August 1974, Biochemical and biophysical research communications,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
January 1971, Biochimica et biophysica acta,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
July 1973, Biochimica et biophysica acta,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
October 1975, Biochimica et biophysica acta,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
November 1980, Nucleic acids research,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
May 2000, Biochemistry,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
November 1975, The Journal of biological chemistry,
A E Tomkinson, and R T Bonk, and J Kim, and N Bartfeld, and S Linn
August 1986, Nucleic acids research,
Copied contents to your clipboard!