Chlorobaculum tepidum TLS displays a complex transcriptional response to sulfide addition. 2013

Brian J Eddie, and Thomas E Hanson
College of Earth, Ocean, and Environment and Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.

Chlorobaculum tepidum is a green sulfur bacterium (GSB) that is a model system for phototrophic sulfur oxidation. Despite over 2 decades of research, conspicuous gaps exist in our understanding of its electron donor metabolism and regulation. RNA sequencing (RNA-seq) was used to provide a global picture of the C. tepidum transcriptome during growth on thiosulfate as the sole electron donor and at time points following the addition of sulfide to such a culture. Following sulfide addition, 121 to 150 protein-coding genes displayed significant changes in expression depending upon the time point. These changes included a rapid decrease in expression of thiosulfate and elemental sulfur oxidation genes. Genes and gene loci with increased expression included CT1087, encoding a sulfide:quinone oxidoreductase required for growth in high sulfide concentrations; a polysulfide reductase-like complex operon, psrABC (CT0496 to CT0494); and, surprisingly, a large cluster of genes involved in iron acquisition. Finally, two genes that are conserved as a cassette in anaerobic bacteria and archaea, CT1276 and CT1277, displayed a strong increase in expression. The CT1277 gene product contains a DNA-binding domain, suggesting a role for it in sulfide-dependent gene expression changes.

UI MeSH Term Description Entries
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D053858 Metabolic Networks and Pathways Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites. Metabolic Networks,Metabolic Pathways,Metabolic Network,Metabolic Pathway,Network, Metabolic,Networks, Metabolic,Pathway, Metabolic,Pathways, Metabolic
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D019414 Chlorobi A phylum of anoxygenic, phototrophic bacteria including the family Chlorobiaceae. They occur in aquatic sediments, sulfur springs, and hot springs and utilize reduced sulfur compounds instead of oxygen. Bacteria, Green Sulfur,Chlorobiaceae,Green Sulfur Bacteria

Related Publications

Brian J Eddie, and Thomas E Hanson
June 2016, FEMS microbiology letters,
Brian J Eddie, and Thomas E Hanson
January 2011, Frontiers in microbiology,
Brian J Eddie, and Thomas E Hanson
June 2014, Photosynthesis research,
Brian J Eddie, and Thomas E Hanson
August 2016, Nature communications,
Brian J Eddie, and Thomas E Hanson
May 2013, Photosynthesis research,
Brian J Eddie, and Thomas E Hanson
April 2017, Biochimica et biophysica acta. Bioenergetics,
Brian J Eddie, and Thomas E Hanson
July 2015, The journal of physical chemistry letters,
Brian J Eddie, and Thomas E Hanson
February 2009, Journal of bacteriology,
Brian J Eddie, and Thomas E Hanson
October 2014, Biochimica et biophysica acta,
Copied contents to your clipboard!