Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. 1990

G Paradies, and F M Ruggiero
Department of Biochemistry and Molecular Biology, University of Bari, Italy.

The effect of aging on the activity of the pyruvate translocator and on the lipid composition in rat-heart mitochondria has been investigated. It has been found that the rate of pyruvate transport in mitochondria from aged rats (28 months old) is markedly reduced (38%) as compared with that obtained with mitochondria from young adults rats (4 months old). Kinetic analysis of the pyruvate transport shows that only the Vmax of this process is decreased, while there is no change in the Km values. The age-related decrement in the activity of the pyruvate carrier is not due to a decrease in the transmembrane delta pH value, neither does it depend on a decrease in the total number of the pyruvate carrier molecules, titrated with radioactive alpha-cyanocinnamate. The lower activity of the pyruvate translocator in mitochondria from aged rats is associated to a parallel decrement of the rate of pyruvate-dependent oxygen uptake. There is, however no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondrion. The Arrhenius plot characteristics differ for pyruvate transport activity in mitochondria from aged rats as compared with young rats in that the break point of the biphasic plot is shifted to a higher temperature. The heart mitochondrial lipid composition is significantly altered in aged rats. The total cholesterol increases (43%), the phospholipids decrease (15%) and the cholesterol/phospholipid molar ratio increases (68%). Among phospholipids, cardiolipin shows the greatest alteration (28% decrease in aged rats). The lower activity of the pyruvate carrier in mitochondria from aged rats may be ascribed to changes in the lipid domain surrounding the carrier molecule in the membrane.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002934 Cinnamates Derivatives of cinnamic acid (the structural formula: phenyl-HC Cinnamate
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy

Related Publications

G Paradies, and F M Ruggiero
January 1978, Acta physiologica et pharmacologica Bulgarica,
G Paradies, and F M Ruggiero
December 1986, Alcoholism, clinical and experimental research,
G Paradies, and F M Ruggiero
November 1986, Thrombosis research,
G Paradies, and F M Ruggiero
October 1975, Bollettino della Societa italiana di biologia sperimentale,
G Paradies, and F M Ruggiero
August 1987, Mechanisms of ageing and development,
G Paradies, and F M Ruggiero
April 2001, Clinical and experimental immunology,
G Paradies, and F M Ruggiero
December 2004, Biochemical and biophysical research communications,
G Paradies, and F M Ruggiero
December 1982, Mechanisms of ageing and development,
Copied contents to your clipboard!