Morphological changes in the zonula adhaerens during embryonic development of chick retinal pigment epithelial cells. 1990

M Sandig, and V I Kalnins
Department of Anatomy, University of Toronto, Ontario, Canada.

Retinal pigment epithelial cells from chicks at various stages of development were examined by transmission electron microscopy to determine how the adult form of the zonula adhaerens, composed of subunits termed zonula adhaerens complexes, is acquired. During early stages of development, between embryonic day 4 and embryonic day 7, the intermembrane discs of zonula adhaerens complexes appear to be formed from material already present between the junctional membranes of the zonulae adhaerentes. In contrast, the cytoplasmic plaque material of the zonulae adhaerentes is difficult to detect before hatching; it is seen as a dense band along the junctional membranes at hatching and as individual subunits in register with the intermembrane discs in adult retinal pigment epithelial cells. After embryonic day 16, when the zonulae adhaerentes increase dramatically in size, single zonula adhaerens complexes are also present basal to the zonulae adhaerentes along the lateral cell membrane. This suggests that, during later stages of development, the junctions grow in size and/or turn over by the addition of pre-assembled zonula adhaerens complexes.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Sandig, and V I Kalnins
April 1987, Cell and tissue research,
M Sandig, and V I Kalnins
January 1983, Nippon Ganka Gakkai zasshi,
M Sandig, and V I Kalnins
May 1985, Investigative ophthalmology & visual science,
M Sandig, and V I Kalnins
August 2000, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
M Sandig, and V I Kalnins
September 2000, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
M Sandig, and V I Kalnins
May 1986, Nippon Ganka Gakkai zasshi,
Copied contents to your clipboard!