Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. 1990

K Condon, and L Silberstein, and H M Blau, and W J Thompson
Department of Zoology, University of Texas, Austin 78712.

The presynaptic neurotoxin, beta-bungarotoxin, was injected into rat fetuses in utero to destroy the innervation of their hindlimb muscles. These injections were made prior to the invasion of motor axons into the muscles and, in some cases, prior to the cleavage of individual muscles. Examination of the lateral motor column of the spinal cord showed a dramatic reduction (greater than 95%) in the number of motoneuron cell bodies. Staining of sections of the hindlimb with silver and with antibodies to neurofilament proteins and to a synaptic vesicle protein indicated that the muscles were aneural. Anti-myosin antibodies applied to sections of the hindlimb revealed that these aneural muscles by the 20th day of gestation had the same types of fibers as were present in normal muscles of the same age. Moreover, fiber types in most muscles showed their characteristic intramuscular distributions. These findings suggest that fiber types can differentiate in the absence of the nervous system. However, some fibers achieved their ultimate fiber type fate without passing through the normal sequence of myosin expressions. Moreover, some slow fibers lost their slow expression, suggesting that the maintenance of the slow differentiation may require innervation. Muscle growth was dramatically affected by the absence of motoneurons; some muscles were decreased in size and others disappeared completely. In muscles which had not degenerated by the time secondary myogenesis normally begins, secondary muscle fibers were generated indicating that the genesis of these fibers is not strictly nerve dependent. Because fiber types differentiate independently of the nervous system, this study suggests that motoneurons selectively innervate fiber types during normal development.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

K Condon, and L Silberstein, and H M Blau, and W J Thompson
May 1983, Developmental biology,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
October 1972, Experimental neurology,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
July 2008, The Journal of experimental biology,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
August 1967, Klinische Wochenschrift,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
January 1974, Zeitschrift fur Anatomie und Entwicklungsgeschichte,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
September 1956, Okajimas folia anatomica Japonica,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
May 2004, Canadian journal of physiology and pharmacology,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
July 1986, Journal of embryology and experimental morphology,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
November 1984, The American journal of anatomy,
K Condon, and L Silberstein, and H M Blau, and W J Thompson
July 1981, The Journal of cell biology,
Copied contents to your clipboard!