Expression strategy of a phlebovirus: biogenesis of proteins from the Rift Valley fever virus M segment. 1990

J A Suzich, and L T Kakach, and M S Collett
Molecular Genetics, Inc., Minnetonka, Minnesota 55343.

The middle (M) RNA segment of Rift Valley fever virus (RVFV) encodes four proteins: the major viral glycoproteins G2 and G1, a 14-kilodalton (kDa) protein, and a 78-kDa protein. These proteins are derived from a single large open reading frame (ORF) present in the virus-complementary M-segment mRNA. We used recombinant vaccinia viruses in which sequences representing the M-segment ORF were engineered as a surrogate system to study phlebovirus protein expression. To investigate the translational initiation codon requirements for synthesis of these proteins, we constructed a series of vaccinia virus recombinants containing specific sequence changes which eliminated select ATG codons found in the region of the ORF preceding the mature glycoprotein-coding sequences (the preglycoprotein region). Examination of phleboviral proteins synthesized in cells infected with these vaccinia virus recombinants clearly showed that the first ATG of the ORF was required for the production of the 78-kDa protein, while synthesis of the 14-kDa protein was absolutely dependent on the second in-phase ATG codon. Efficient biosynthesis of glycoprotein G2 was shown to depend on one or more ATG codons within the preglycoprotein region, but not the first one of the ORF. Synthesis of about one-half of the total glycoprotein G1 was affected by the amino acid changes that eliminated ATG codons, while production of the remainder appeared to be independent of all ATG codons in the preglycoprotein region. These data indicated that the means for glycoprotein G1 biosynthesis was distinct from those of the other three M-segment gene products. The results presented herein suggest that a surprisingly complex expression strategy is employed by the RVFV M segment. Although the full nature of the mechanisms involved in the biogenesis of the four RVFV M-segment proteins remains unclear, it does involve the use of at least two (ATG codons 1 and 2), and likely more, distinct translation start sites within the same ORF to produce its complete complement of gene products.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002043 Bunyaviridae A family of viruses, mainly arboviruses, consisting of a single strand of RNA. Virions are enveloped particles 90-120 nm diameter. The complete family contains over 300 members arranged in five genera: ORTHOBUNYAVIRUS; HANTAVIRUS; NAIROVIRUS; PHLEBOVIRUS; and TOSPOVIRUS.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012296 Rift Valley fever virus A mosquito-borne species of the PHLEBOVIRUS genus found in eastern, central, and southern Africa, producing massive hepatitis, abortion, and death in sheep, goats, cattle, and other animals. It also has caused disease in humans.

Related Publications

J A Suzich, and L T Kakach, and M S Collett
March 1988, Journal of virology,
J A Suzich, and L T Kakach, and M S Collett
September 1988, Virology,
J A Suzich, and L T Kakach, and M S Collett
May 1986, Virology,
J A Suzich, and L T Kakach, and M S Collett
July 1985, Virology,
J A Suzich, and L T Kakach, and M S Collett
November 2023, Viruses,
J A Suzich, and L T Kakach, and M S Collett
September 2023, bioRxiv : the preprint server for biology,
J A Suzich, and L T Kakach, and M S Collett
February 2020, Antiviral research,
Copied contents to your clipboard!