Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. 2013

Tara A Schwetz, and Alessandro Ustione, and David W Piston
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through G(i) activation of Y(1) and SSTR(1&5) receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca(2+)](i)) activity upon glucose stimulation, whereas SST alters this response. G(βγ)-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca(2+)](i). mSIRK-induced G(βγ) activation does not modulate glucose metabolism but increases [Ca(2+)](i) activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through G(βγ) inhibition of Ca(2+) activity, while NPY activates a Ca(2+)-independent pathway mediated by G(α). GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004353 Drug Evaluation, Preclinical Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

Tara A Schwetz, and Alessandro Ustione, and David W Piston
May 1993, European journal of pharmacology,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
August 2022, Peptides,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
May 1994, The American journal of physiology,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
April 1990, Current eye research,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
January 1990, Diabetes research (Edinburgh, Scotland),
Tara A Schwetz, and Alessandro Ustione, and David W Piston
February 2011, Neuropeptides,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
September 1978, Metabolism: clinical and experimental,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
September 1991, Neuropeptides,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
January 1985, Peptides,
Tara A Schwetz, and Alessandro Ustione, and David W Piston
December 1988, Acta physiologica Scandinavica,
Copied contents to your clipboard!