Viscoelastic characterization of mouse zona pellucida. 2013

Jungsik Kim, and Jung Kim
Convergence R&D Laboratory, LG Electronics, Seoul 137-130, Korea. js_kim@kaist.ac.kr

The viscoelastic properties of the zona pellucida (ZP), which is the extracellular coat surrounding an oocyte/embryo, are evaluated in this study. Previous studies demonstrate that ZP mechanical properties change during oocyte maturation, fertilization, and early embryo development, but linear pure elastic models currently being used do not satisfy the time-dependent mechanical behavior of the ZP. In this paper, nonlinear viscoelastic characterization was performed using the Hunt-Crossley model and the newly developed vision-based nanoforce estimation method. The results show that viscoelasticity is a physical property of the ZP that exhibits hysteresis. The stiffness and viscosity parameters simultaneously increase following fertilization, causing the stiffness and viscosity of the embryo ZP (ten samples) to be 2.57-fold and 4.44-fold greater, respectively, than that of the oocyte ZP (eleven samples). This behavior well describes the noncovalently cross-linked filamentous structure of the ZP, supporting zona hardening during fertilization as a mechanically relevant event.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D004548 Elasticity Resistance and recovery from distortion of shape.
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D015044 Zona Pellucida A tough transparent membrane surrounding the OVUM. It is penetrated by the sperm during FERTILIZATION.

Related Publications

Jungsik Kim, and Jung Kim
December 2003, IEEE transactions on nanobioscience,
Jungsik Kim, and Jung Kim
January 2018, Current topics in developmental biology,
Jungsik Kim, and Jung Kim
September 2003, The Journal of biological chemistry,
Jungsik Kim, and Jung Kim
April 2015, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Jungsik Kim, and Jung Kim
June 1999, Molecular human reproduction,
Jungsik Kim, and Jung Kim
May 1980, Biology of reproduction,
Jungsik Kim, and Jung Kim
January 2004, Cytogenetic and genome research,
Jungsik Kim, and Jung Kim
April 1990, Biochemical Society transactions,
Jungsik Kim, and Jung Kim
December 2001, Biology of reproduction,
Copied contents to your clipboard!