[Inhibitory effect of (S)-chlorohydrin on rat sperm motility and hyperactivation]. 2012

Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China. haozhang18@gmail.com

OBJECTIVE To investigate the effects of (S)-alpha-chlorohydrin (SACH) on rat epididymal sperm motility and hyperactivation and explore the mechanisms of the effects. METHODS 20 adult male Sprague-Dawley rats were divided randomly into 4 groups and dosed orally with 0, 2.5, 5.0 and 10 mg/kg BW SACH respectively for 52 days. After the cauda epididymal sperm were incubated under a capacitating condition for 5 h, sperm motility and hyperactivation parameters were obtained by computer-assisted sperm analysis (CASA), and sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activity, adenosine triphosphate (ATP) and cyclic adenosine monophosphate (cAMP) were assayed. The protecting effect of pentoxifylline (PTF) against SACH was aslo tested. RESULTS The sperm from the SACH-treated rats treated showed significant decreases in curvilinear velocity (VCL), average path velocity (VAP), straight line velocity (VSL) and amplitude of lateral head movement (ALH) (P < 0.01 of all), and an increase in linearity (LIN) (P < 0.01). The SACH-treated rats had much less sperm population with VCL > or = 400 microm/s or LIN < or = 20% than that of the control (P < 0.05 and P < 0.01, respectively), indicating that SACH diminished hyperactivation of rat sperm. GAPDS activities were inhibited by SACH, and decreasing trends of ATP and cAMP levels were observed. PTF rescued the cAMP level which was depressed by SACH, and alleviated in part the inhibition of sperm motility and hyperactivation. CONCLUSIONS SACH impaired the motility and hyperactivation of rat sperm, which might result from the inhibition of GAPDS by SACH and subsequent defects of ATP and cAMP.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008297 Male Males
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000517 alpha-Chlorohydrin A chlorinated PROPANEDIOL with antifertility activity in males used as a chemosterilant in rodents. alpha-Chlorhydrin,3-Chloro-1,2-propanediol,3-Chloropropanediol,3-MCPD,3-Monochloropropane-1,2-diol,Glycerol alpha-Monochlorohydrin,U-5897,3 Chloro 1,2 propanediol,3 Chloropropanediol,3 Monochloropropane 1,2 diol,Glycerol alpha Monochlorohydrin,U 5897,U5897,alpha Chlorhydrin,alpha Chlorohydrin,alpha-Monochlorohydrin, Glycerol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
December 1998, Fertility and sterility,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
January 2013, Methods in molecular biology (Clifton, N.J.),
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
October 1996, Molecular human reproduction,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
March 1986, Contraception,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
July 2002, Pharmacology, biochemistry, and behavior,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
January 2001, Reproductive toxicology (Elmsford, N.Y.),
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
August 1993, Fertility and sterility,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
January 2003, Reproductive biomedicine online,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
February 1994, Fertility and sterility,
Hao Zhang, and Weiwei Zheng, and Xia Wang, and Li Liu, and Weidong Qu
May 1993, Fertility and sterility,
Copied contents to your clipboard!