Secondary structures in polyoma DNA. 1979

M Wu, and H Manor, and N Davidson

Three reproducible secondary-structure features were observed on single strands of polyoma virus DNA mounted for electron microscopy by the T4 gene 32 protein technique: (i) a hairpin fold-back extending from 92.9 +/- 0.8 to 95.0 +/- 0.7 map units; (ii) a small loop extending from 63.2 +/- 3.1 to 68.5 +/- 2.8 map units; and (iii) a big loop extending from 51.9 +/- 2.3 to 68.9 +/- 2.1 map units. Both loops are bounded by inverted repeat stems of length 40 +/- 20 base pairs. The stem sequences around 68.5 and 68.9 of the large and small loops overlap, either partially or completely. Several lines of evidence indicate that the inverted repeat stems of the two secondary-structure loops lie in the regions of polyoma virus DNA flanking and probably very close to the sequences that are spliced out in the formation of the late 16S and 18S messages, whereas the hairpin fold-back appears to map at a splicing point of an early message. These structures may therefore be important for the processing of the primary transcripts to form the early and late messages.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

M Wu, and H Manor, and N Davidson
December 1971, Biochimica et biophysica acta,
M Wu, and H Manor, and N Davidson
March 1970, Proceedings of the National Academy of Sciences of the United States of America,
M Wu, and H Manor, and N Davidson
June 1969, Proceedings of the National Academy of Sciences of the United States of America,
M Wu, and H Manor, and N Davidson
January 2000, Current medicinal chemistry,
M Wu, and H Manor, and N Davidson
April 1986, Journal of molecular biology,
M Wu, and H Manor, and N Davidson
May 1961, Nature,
M Wu, and H Manor, and N Davidson
February 1999, Analytical biochemistry,
M Wu, and H Manor, and N Davidson
November 2012, Nature reviews. Genetics,
M Wu, and H Manor, and N Davidson
March 1979, Science (New York, N.Y.),
M Wu, and H Manor, and N Davidson
January 1983, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!