Cholesterol distribution in rat liver and brain mitochondria as determined by stopped-flow kinetics with filipin. 1990

G Crémel, and D Filliol, and V Jancsik, and A Rendon
Centre de Neurochimie du CNRS, Strasbourg, France.

Recently, analysis of protein distribution in rat brain mitochondria suggested the existence of distinct cholesterol domains in the outer membrane (Dorbani et al., 1987, Arch. Biochem. Biophys. 252, 188-196) while such domains were not detected in rat liver mitochondria (Jancsik et al., 1988, Arch. Biochem. Biophys. 264, 295-301). We studied cholesterol distribution in both types of mitochondria by analyzing the kinetics of filipin-cholesterol complex formation, using the stopped-flow technique. In liver mitochondria, the kinetics are characterized by a biphasic curve which presumably corresponds to the two membranes. This was confirmed by the finding that pretreatment with digitonin abolished one of the kinetic components. Sonication of the mitochondria increased the rate of the filipin-cholesterol complex formation and also abolished one of the two components. In the case of brain mitochondria, several distinct cholesterol domains could be revealed: one of them was cholesterol-free and it was directly accessible to filipin. Two other domains were revealed by differences found in the rate of the cholesterol-filipin complex formation. It is noteworthy that only a part of the cholesterol is accessible to filipin. Sonication of mitochondria decreased the proportion of cholesterol molecules accessible to filipin. This suggests specific interactions of cholesterol with other mitochondrial components, which occur only in brain mitochondria.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005372 Filipin A complex of polyene antibiotics obtained from Streptomyces filipinensis. Filipin III alters membrane function by interfering with membrane sterols, inhibits mitochondrial respiration, and is proposed as an antifungal agent. Filipins I, II, and IV are less important. Filipin III,Desoxylagosin,Filimarisin,Filipin I,Filipin II,Filipin IV,NSC-3364,U-5956,NSC 3364,NSC3364,U 5956,U5956
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Crémel, and D Filliol, and V Jancsik, and A Rendon
June 1984, Journal de biologie buccale,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
November 1968, Biochimica et biophysica acta,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
August 1989, Biochemical and biophysical research communications,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
March 1985, Biochemical pharmacology,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
January 1984, Cytometry,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
June 1984, Journal de biologie buccale,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
August 1969, FEBS letters,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
March 1974, Biochemistry,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
November 1984, European journal of cell biology,
G Crémel, and D Filliol, and V Jancsik, and A Rendon
April 1982, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!