Effects of adolescent social defeat on adult amphetamine-induced locomotion and corticoaccumbal dopamine release in male rats. 2013

Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, USA.

Maturation of mesocorticolimbic dopamine systems occurs during adolescence, and exposure to social stress during this period results in behavioral dysfunction including substance abuse disorders. Adult male rats exposed to repeated social defeat in adolescence exhibit reduced basal dopamine tissue content in the medial prefrontal cortex, altered dopamine tissue content in corticoaccumbal dopamine regions following acute amphetamine, and increased amphetamine conditioned place preference following repeated amphetamine treatment. Such changes may reflect altered amphetamine-induced extracellular dopamine release in the corticoaccumbal regions. Therefore, we used in vivo microdialysis to measure extracellular dopamine simultaneously within the medial prefrontal cortex and nucleus accumbens core of previously defeated rats and controls, in response to either acute or repeated (7 daily injections) of amphetamine (1.0 mg/kg). Locomotion responses to acute/repeated amphetamine were also assessed the day prior to taking dopamine measurements. Adolescent defeat potentiated adult locomotion responses to acute amphetamine, which was negatively correlated with attenuated amphetamine-induced dopamine release in the medial prefrontal cortex, but there was no difference in amphetamine-induced accumbal dopamine release. However, both locomotion and corticoaccumbal dopamine responses to repeated amphetamine were equivalent between previously defeated rats and controls. These data suggest adolescent defeat enhances behavioral responses to initial amphetamine exposure as a function of diminished prefrontal cortex dopamine activity, which may be sufficient to promote subsequently enhanced seeking of drug-associated cues. Interestingly, repeated amphetamine treatment appears to normalize amphetamine-elicited locomotion and cortical dopamine responses observed in adult rats exposed to adolescent social defeat, providing implications for treating stress-induced dopamine dysfunction.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012919 Social Behavior Any behavior caused by or affecting another individual or group usually of the same species. Sociality,Behavior, Social,Behaviors, Social,Social Behaviors
D013315 Stress, Psychological Stress wherein emotional factors predominate. Cumulative Stress, Psychological,Emotional Stress,Individual Stressors,Life Stress,Psychological Cumulative Stress,Psychological Stress Experience,Psychological Stress Overload,Psychologically Stressful Conditions,Stress Experience, Psychological,Stress Measurement, Psychological,Stress Overload, Psychological,Stress Processes, Psychological,Stress, Emotional,Stressful Conditions, Psychological,Psychological Stress,Stress, Psychologic,Stressor, Psychological,Condition, Psychological Stressful,Condition, Psychologically Stressful,Conditions, Psychologically Stressful,Cumulative Stresses, Psychological,Experience, Psychological Stress,Individual Stressor,Life Stresses,Measurement, Psychological Stress,Overload, Psychological Stress,Psychologic Stress,Psychological Cumulative Stresses,Psychological Stress Experiences,Psychological Stress Measurement,Psychological Stress Measurements,Psychological Stress Overloads,Psychological Stress Processe,Psychological Stress Processes,Psychological Stresses,Psychological Stressful Condition,Psychological Stressful Conditions,Psychological Stressor,Psychological Stressors,Psychologically Stressful Condition,Stress Experiences, Psychological,Stress Processe, Psychological,Stress, Life,Stress, Psychological Cumulative,Stressful Condition, Psychological,Stressful Condition, Psychologically,Stressor, Individual
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
December 2015, Psychopharmacology,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
May 1993, Neuroscience research,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
April 2014, Psychopharmacology,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
February 2021, eNeuro,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
January 2004, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
May 2023, Behavioural brain research,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
October 2014, Behavioural processes,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
January 2016, Frontiers in behavioral neuroscience,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
November 1995, Neuroscience letters,
Andrew R Burke, and Gina L Forster, and Andrew M Novick, and Christina L Roberts, and Michael J Watt
January 2008, European journal of pharmacology,
Copied contents to your clipboard!