Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S + 28S in-situ hybridization. 1990

M King, and N Contreras, and R L Honeycutt
Natural Sciences Division, Museum of Arts and Sciences of the Northern Territory, Darwin, Australia.

Five distinct classes of secondary constriction are found in the hylid frogs from the genera Litoria and Cyclorana, each of which is defined by its C-banding pattern and morphology (King, 1980, 1987). In-situ hybridization experiments utilizing 18S + 28S copy RNA probes derived from Xenopus and Drosophila rDNA templates, were made on nine species of frogs possessing the major constriction types. Types 1, 2, 4, and 5 are confirmed as being NORs. These results also indicate that type 1 and 2 constriction types are not differentially despiralized as previously suggested, but show absolute differences in the quantity of ribosomal DNA present. This variation took two forms, deletion polymorphism and amplification polymorphism. These differences were observed between homologues within cells and between cells within individuals. Animals possessing these 'despiralized' constrictions are therefore mosaics for both deletion and amplification polymorphisms. Polymorphism frequencies vary greatly between constriction types. Some specimens have a higher level of presence/absence heterozygosity, (L. moorei, type 2, L. nannotis type 5, L. raniformis (animal A, pair 8 type 2), than do others (L. peronii, L. rothii, L. caerulea). The above species also vary markedly in the degree and frequency of amplification of the NORs. The type 4 constrictions analysed (L. coplandi, L. lesueuri and C. novaehollandiae) have a particularly low frequency of presence/absence heterozygosity, and they have fewer size heteromorphisms between homologues. The type 3 ephemeral constrictions did not hybridize to cRNA probes at any stage. In all but one of the species studied, a single pair of chromosomes possessed an NOR. However, in L. raniformis these occurred on two pairs of chromosomes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009697 Nucleolus Organizer Region The chromosome region which is active in nucleolus formation and which functions in the synthesis of ribosomal RNA. Nucleolar Organizer,Nucleolar Organizers,Nucleolus Organizer Regions,Organizer Region, Nucleolus,Organizer Regions, Nucleolus,Organizer, Nucleolar,Organizers, Nucleolar,Region, Nucleolus Organizer,Regions, Nucleolus Organizer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012339 RNA, Ribosomal, 28S Constituent of the 60S subunit of eukaryotic ribosomes. 28S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 28S Ribosomal RNA,28S rRNA,RNA, 28S Ribosomal,Ribosomal RNA, 28S
D015347 RNA Probes RNA, usually prepared by transcription from cloned DNA, which complements a specific mRNA or DNA and is generally used for studies of virus genes, distribution of specific RNA in tissues and cells, integration of viral DNA into genomes, transcription, etc. Whereas DNA PROBES are preferred for use at a more macroscopic level for detection of the presence of DNA/RNA from specific species or subspecies, RNA probes are preferred for genetic studies. Conventional labels for the RNA probe include radioisotope labels 32P and 125I and the chemical label biotin. RNA probes may be further divided by category into plus-sense RNA probes, minus-sense RNA probes, and antisense RNA probes. Gene Probes, RNA,RNA Probe,Probe, RNA,Probes, RNA,Probes, RNA Gene,RNA Gene Probes

Related Publications

M King, and N Contreras, and R L Honeycutt
September 1978, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie,
M King, and N Contreras, and R L Honeycutt
April 1990, Revista medica de Chile,
M King, and N Contreras, and R L Honeycutt
June 1975, Annales de genetique,
M King, and N Contreras, and R L Honeycutt
January 1997, Cytogenetics and cell genetics,
M King, and N Contreras, and R L Honeycutt
February 1987, The Journal of pathology,
M King, and N Contreras, and R L Honeycutt
January 1990, Neurosurgery,
M King, and N Contreras, and R L Honeycutt
January 1993, British journal of neurosurgery,
M King, and N Contreras, and R L Honeycutt
January 1981, Cytogenetics and cell genetics,
Copied contents to your clipboard!