Metabolism of apoE-free high density lipoproteins in rat hepatoma cells: evidence for a retroendocytic pathway. 1990

J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
Department of Physiology, Louisiana State University Medical Center, New Orleans 70112.

The cellular metabolism of apoE-free HDL (HDL) was studied in rat hepatoma cells (FU5AH). Cells incubated with HDL showed a dose-dependent decreased incorporation of [14C]acetate into cell sterol, indicating a net cholesterol delivery to the cells. HDL was localized both at the cell surface and inside the cell. This conclusion was drawn from both the association of 125I-labeled HDL with the cells under different experimental conditions and morphological evidence based on the association of colloidal gold-labeled HDL with the cells. Up to 63% of the 125I-labeled HDL protein initially inside the cell was subsequently recovered in the media as trichloroacetic acid precipitable (TCA-ppt) protein after a 30-min, 37 degrees C chase with a 100-fold concentration of unlabeled HDL. About 27% of the TCA-ppt apoprotein originally inside the cell was recovered as TCA-soluble material. Thus, we conclude that of the HDL apoprotein taken up by the cells, the majority is resecreted by a retroendocytosis pathway. The quantity of HDL apoprotein reappearing in the media was stimulated by the presence of unlabeled HDL in the media, while the amount of TCA-soluble material produced was not. Retroendocytosis of HDL was inhibited at 0 degree C and by the presence of 10 mM NaCN, 20 mM 2-deoxy-D-glucose in the media. Thus, the pathway appears to be both temperature- and energy-sensitive. HDL resecreted by the cell were depleted of cholesteryl ester and showed an altered size distribution, indicative of lipoprotein catabolism and remodeling. This study provides evidence for the existence of an endocytosis-retroendocytosis pathway for HDL apoproteins in a rat hepatoma cell and for the possibility that the endocytosis-retroendocytosis pathway may be involved in lipid delivery to the cell.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001057 Apolipoproteins E A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III. Apo-E,Apo E,Apo E Isoproteins,ApoE,Apolipoprotein E Isoproteins,Apoprotein (E),Apoproteins E,Isoproteins, Apo E,Isoproteins, Apolipoprotein E
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
September 1987, Biochimica et biophysica acta,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
January 2012, Eksperimental'naia i klinicheskaia farmakologiia,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
July 1989, Journal of lipid research,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
February 1986, Molecular and cellular endocrinology,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
January 1994, Trends in cardiovascular medicine,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
July 1987, Journal of lipid research,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
August 1990, European heart journal,
J G DeLamatre, and T G Sarphie, and R C Archibold, and C A Hornick
January 1979, Progress in biochemical pharmacology,
Copied contents to your clipboard!