Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. 2013

Maciej Lech, and Hans-Joachim Anders
Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians Universität München, Germany. Electronic address: maciej.lech@med.uni-muenchen.de.

Certain macrophage phenotypes contribute to tissue fibrosis, but why? Tissues host resident mononuclear phagocytes for their support to maintain homeostasis. Upon injury the changing tissue microenvironment alters their phenotype and primes infiltrating monocytes toward pro-inflammatory macrophages. Several mechanisms contribute to their deactivation and macrophage priming toward anti-inflammatory and pro-regenerative macrophages that produce multiple cytokines that display immunosuppressive as well as pro-regeneratory effects, such as IL-10 and TGF-beta1. Insufficient parenchymal repair creates a tissue microenvironment that becomes dominated by multiple growth factors that promote the pro-fibrotic macrophage phenotype that itself produces large amounts of such growth factors that further support fibrogenesis. However, the contribution of resident mononuclear phagocytes to physiological extracellular matrix turnover implies also their fibrolytic effects in the late stage of tissue scaring. Fibrolytic macrophages break down fibrous tissue, but their phenotypic characteristics remain to be described in more detail. Together, macrophages contribute to tissue fibrosis because the changing tissue environments prime them to assist and orchestrate all phases of tissue injury and repair. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D005355 Fibrosis Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury. Cirrhosis,Fibroses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014945 Wound Healing Restoration of integrity to traumatized tissue. Healing, Wound,Healings, Wound,Wound Healings
D053773 Transforming Growth Factor beta1 A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME. TGF-beta1,Transforming Growth Factor-beta1,TGF-beta-1,TGF-beta1 Latency-Associated Protein,TGF-beta1LAP,Transforming Growth Factor beta 1 Latency Associated Peptide,Transforming Growth Factor beta I,Latency-Associated Protein, TGF-beta1,TGF beta 1,TGF beta1 Latency Associated Protein,TGF beta1LAP

Related Publications

Maciej Lech, and Hans-Joachim Anders
January 2011, Frontiers in immunology,
Maciej Lech, and Hans-Joachim Anders
November 2013, The American journal of pathology,
Maciej Lech, and Hans-Joachim Anders
September 2013, Biochemical pharmacology,
Maciej Lech, and Hans-Joachim Anders
May 2024, Cell research,
Copied contents to your clipboard!