Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-κB. 2012

Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
The Vanderbilt Vaccine Center, Nashville, Tennessee, USA.

Respiratory syncytial virus (RSV) is the most common viral cause of severe lower respiratory tract illness in infants and children. The virus replicates in polarized epithelial cells in the airway and, to a lesser extent, infects airway antigen-presenting cells, such as dendritic cells (DCs). RSV possesses a number of expressed genes that antagonize the effect of type I interferons and other related host factor pathways that inhibit replication efficiency. Virus infection alters host gene transcription and the translation of host transcripts through specific antagonism of the function of host proteins, through induction of RNA stress granules, and through induction of altered patterns of host gene expression. In healthy cells, microRNAs (miRNAs) regulate gene expression by targeting the noncoding region of mRNA molecules to cause silencing or degradation of transcripts. It is not known whether or not RSV infection alters the level of microRNAs in cells. We profiled the pattern of expression of host cell microRNAs in RSV-infected epithelial cells or DCs and found that RSV did alter microRNA expression but in a cell-type-specific manner. The studies showed that let-7b was upregulated in DCs, while let-7i and miR-30b were upregulated in epithelial cells in a process that required viral replication. Interestingly, we found that the RSV nonstructural genes NS1 and NS2 antagonized the upregulation of let-7i and miR-30b. RSV appears to manipulate host cell gene expression through regulation of expression of miRNAs related to the interferon response. The data suggest a new mechanism of virus-host cell interactions for paramyxoviruses. OBJECTIVE Respiratory syncytial virus (RSV) is the most common cause of serious lower respiratory tract illness in infants and children. The human innate immune response inhibits RSV replication early after inoculation, principally through the effect of substances called interferons. The virus, however, has developed several mechanisms for counteracting the host innate immune response. It is not known whether or not RSV infection alters the expression of host microRNAs, which are short RNA sequences that are posttranscriptional regulators. This paper shows that RSV does induce unique patterns of microRNA expression related to the NF-κB pathway or interferon pathways. The microRNA profiles differed depending on the cell type that was infected, airway cell or antigen-presenting cell. Interestingly, the virus appears to counteract the microRNA response by expressing nonstructural viral genes in the cell that reduce microRNA induction. The data suggest a new way in which paramyxoviruses regulate the host cell response to infection.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D016899 Interferon-beta One of the type I interferons produced by fibroblasts in response to stimulation by live or inactivated virus or by double-stranded RNA. It is a cytokine with antiviral, antiproliferative, and immunomodulating activity. Interferon, Fibroblast,beta-Interferon,Fiblaferon,Interferon, beta,Interferon, beta-1,Interferon-beta1,beta-1 Interferon,Fibroblast Interferon,Interferon beta,Interferon beta1,Interferon, beta 1,beta 1 Interferon,beta Interferon

Related Publications

Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
March 2012, Microbial pathogenesis,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
March 1970, Lancet (London, England),
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
April 1981, Annals of internal medicine,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
August 1971, Lancet (London, England),
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
December 2012, Innate immunity,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
January 1991, The veterinary quarterly,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
January 1986, Journal of virology,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
March 2014, Journal of virology,
Natalie J Thornburg, and Sarah L Hayward, and James E Crowe
May 2012, Molecular & cellular proteomics : MCP,
Copied contents to your clipboard!