Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes. 2013

Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea.

Caffeine has been known to trigger seizures, however, the precise mechanism about the proconvulsive effect of caffeine remains unclear. Glutamate transporters play an important role to maintain the homeostasis of glutamate concentration in the brain tissue. Especially, dysfunction of excitatory amino acid transporter type 3 (EAAT3) can lead to seizures. We investigated the effects of caffeine on the activity of EAAT3 and the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K). Rat EAAT3 was expressed in Xenopus oocytes by injecting EAAT3 mRNA. l-Glutamate (30μM)-induced inward currents were recorded via the two-electrode voltage clamp method. Caffeine decreased EAAT3 activity in a dose-dependent manner. Caffeine (30μM for 3min) significantly reduced V(max), but did not alter K(m) value of EAAT3 for glutamate. When preincubated oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) were exposed to caffeine, PMA-induced increase in EAAT3 activity was abolished. Two PKC inhibitors (chelerythrine and staurosporine) significantly reduced basal EAAT3 activity. Whereas, there were no significant differences among the PKC inhibitors, caffeine, and PKC inhibitors+caffeine groups. In similarly fashion, wortmannin (a PI3K inhibitor) significantly decreased EAAT3 activity, however no statistical differences were observed among the wortmannin, caffeine, and wortmannin+caffeine groups. Our results demonstrate that caffeine attenuates EAAT3 activity and this reducing effect of caffeine seems to be mediated by PKC and PI3K.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D005260 Female Females
D000077191 Wortmannin An androstadiene metabolite produced by the fungi PENICILLIUM funiculosum that inhibits PHOSPHATIDYLINOSITOL-3-KINASES and alloantigen-specific activation of T-LYMPHOCYTES in human tumor cell lines. It is widely used in CELL BIOLOGY research and has broad therapeutic potential. MS 54,MS-54,MS54
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000730 Androstadienes Derivatives of the steroid androstane having two double bonds at any site in any of the rings.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
December 2010, Steroids,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
February 2012, European journal of pharmacology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
January 2009, European journal of pharmacology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
September 2015, European journal of pharmacology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
September 2001, Brain research,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
June 2014, European journal of pharmacology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
May 2009, The Journal of pharmacy and pharmacology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
January 2012, Neuroreport,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
June 2005, The Journal of experimental biology,
Hyun-Jung Shin, and Jung-Hee Ryu, and Sang-Tae Kim, and Zhiyi Zuo, and Sang-Hwan Do
June 2003, Neuroscience letters,
Copied contents to your clipboard!