Muscle carnitine metabolism during incremental dynamic exercise in humans. 1990

K Sahlin
Department of Clinical Physiology, Karolinska Institute, Huddinge University Hospital, Sweden.

The changes in muscle content of carnitine and acetylcarnitine have been studied during incremental dynamic exercise. Six subjects exercised for 10 min on an ergometer at 40 and 75% of their maximal oxygen uptake (VO2 max) and to fatigue at 100% of VO2 max (about 4 min). Muscle samples were taken from the quadriceps femoris muscle at rest and after exercise. Muscle content of free carnitine was (means +/- SE) 15.9 +/- 1.7 mmol kg-1 d.wt (dry weight) at rest and remained unchanged after exercise at low intensity but decreased to 5.9 +/- 0.6 and 4.6 +/- 0.5 mmol kg-1 d.wt after exercise at 75 and 100% of VO2 max respectively. Acetylcarnine content at rest was 6.9 +/- 1.9 mmol kg-1 d.wt and increased during exercise in correspondence with the decrease in free carnitine. Muscle content of pyruvate and lactate was unchanged after exercise at 40% of VO2 max but increased at the higher intensities. The parallel increases in acetylcarnitine, pyruvate and lactate indicate that formation of acetylcarnitine is augmented when the availability of glycolytic three-carbon metabolites is high and is consistent with the idea that acetylcarnitine provides a sink for pyruvate and acetyl CoA. This could be of importance for the maintenance of an adequate level of CoA and thus function of the tricarboxylic acid cycle.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl
D000108 Acetylcarnitine An acetic acid ester of CARNITINE that facilitates movement of ACETYL COA into the matrices of mammalian MITOCHONDRIA during the oxidation of FATTY ACIDS. Acetyl Carnitine,Medosan,Acetyl-L-Carnitine,Acetylcarnitine, (R)-Isomer,Alcar,Branigen,Levocarnitine Acetyl,Acetyl L Carnitine,Carnitine, Acetyl
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

K Sahlin
March 1996, Journal of applied physiology (Bethesda, Md. : 1985),
K Sahlin
October 1986, Journal of applied physiology (Bethesda, Md. : 1985),
K Sahlin
March 2000, Clinical and experimental pharmacology & physiology,
K Sahlin
January 1994, Life sciences,
K Sahlin
June 1988, Journal of applied physiology (Bethesda, Md. : 1985),
K Sahlin
August 1990, The American journal of physiology,
K Sahlin
December 2008, International journal of sport nutrition and exercise metabolism,
Copied contents to your clipboard!