Effects of an organic hydroperoxide on the activity of antioxidant enzymes in cultured mammalian cells. 1990

T Ochi
Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.

As a basis for an evaluation of the role of the cellular antioxidant defense system against oxidative stress, the effects of an organic hydroperoxide, tertiary-butyl hydroperoxide (t-BuOOH), on the activity of antioxidant enzymes were investigated in cultured Chinese hamster V79 cells. Incubation of cells with t-BuOOH for 1 h significantly increased the activity of Cu-Zn superoxide dismutase (SOD) up to a level 1.4 times that of control cells. In contrast, the activities of catalase and glutathione reductase (GSSG-Rx) were not affected, while the activity of glutathione peroxidase (GSH-Px) was inhibited to a significant extent by t-BuOOH. Hydrogen peroxide also inhibited GSH-Px activity but its potency in this regard was somewhat lower than that of equimolar amount of t-BuOOH. Earlier studies demonstrated that t-BuOOH-induced cytotoxicity, single strand breaks (ssb) in DNA and structural aberrations in the chromosomes of V79 cells can be suppressed almost completely by an iron chelator o-phenanthroline. However, the iron chelator did not suppress the t-BuOOH-induced inhibition of GSH-Px activity. Likewise, a diffusible scavenger of free radicals, butylated hydroxytoluene (BHT) did not affect the hydroperoxide-induced inhibition of the enzymatic activity. These results suggest that a mechanism other than iron-mediated radical reaction is involved in the inhibition of GSH-Px activity by t-BuOOH. Modulation of the activity of antioxidant enzymes by the oxidative agent diamide was very similar to that by t-BuOOH. Inhibition of GSH-Px activity by t-BuOOH was reversible and the reduced activity returned to pre-inhibition levels within 1-2 h of post-treatment incubation. A mechanism for the inhibition of GSH-Px by t-BuOOH is discussed with reference to the oxidation of selenocysteine residues which results in perturbation of the normal catalytic cycle.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008297 Male Males
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D010618 Phenanthrolines Phenanthroline
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003958 Diamide A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells. Diazodicarboxylic Acid Bis(N,N-dimethyl)amide,Diazodicarboxylic Acid Bisdimethylamide,Dizene Dicarboxylic Acid Bis(N,N-dimethylamide),Dizenedicarboxylic Acid Bis(N,N-dimethylamide),Tetramethylazoformamide,Acid Bisdimethylamide, Diazodicarboxylic,Bisdimethylamide, Diazodicarboxylic Acid
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

T Ochi
December 1994, Ecotoxicology and environmental safety,
T Ochi
December 1975, Experientia,
T Ochi
October 2014, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
T Ochi
January 1979, The Journal of biological chemistry,
T Ochi
March 1971, The Journal of biological chemistry,
Copied contents to your clipboard!