Chronobiology of alcohol: studies in C57BL/6J and DBA/2J inbred mice. 2013

Alan M Rosenwasser, and Michael C Fixaris
Department of Psychology, University of Maine, Orono, ME 04469, USA. alanr@maine.edu

Human alcoholics display dramatic disruptions of circadian rhythms that may contribute to the maintenance of excessive drinking, thus creating a vicious cycle. While clinical studies cannot establish direct causal mechanisms, recent animal experiments have revealed bidirectional interactions between circadian rhythms and ethanol intake, suggesting that the chronobiological disruptions seen in human alcoholics are mediated in part by alterations in circadian pacemaker function. The present study was designed to further explore these interactions using C57BL/6J (B6) and DBA/2J (D2) inbred mice, two widely employed strains differing in both circadian and alcohol-related phenotypes. Mice were maintained in running-wheel cages with or without free-choice access to ethanol and exposed to a variety of lighting regimens, including standard light-dark cycles, constant darkness, constant light, and a "shift-lag" schedule consisting of repeated light-dark phase shifts. Relative to the standard light-dark cycle, B6 mice showed reduced ethanol intake in both constant darkness and constant light, while D2 mice showed reduced ethanol intake only in constant darkness. In contrast, shift-lag lighting failed to affect ethanol intake in either strain. Access to ethanol altered daily activity patterns in both B6 and D2 mice, and increased activity levels in D2 mice, but had no effects on other circadian parameters. Thus, the overall pattern of results was broadly similar in both strains, and consistent with previous observations that chronic ethanol intake alters circadian activity patterns while environmental perturbation of circadian rhythms modulates voluntary ethanol intake. These results suggest that circadian-based interventions may prove useful in the management of alcohol use disorders.

UI MeSH Term Description Entries
D008029 Lighting The illumination of an environment and the arrangement of lights to achieve an effect or optimal visibility. Its application is in domestic or in public settings and in medical and non-medical environments. Illumination
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D002492 Central Nervous System Depressants A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents). CNS Depressants,Depressants, CNS
D002909 Chronobiology Phenomena Biological systems as affected by time. Aging, biological rhythms, and cyclic phenomena are included. Statistical, computer-aided mathematical procedures are used to describe, in mathematical terminology, various biological functions over time. Chronobiology Concepts,Chronobiology Phenomenon,Chronobiology Concept,Concept, Chronobiology,Concepts, Chronobiology,Phenomena, Chronobiology,Phenomenon, Chronobiology
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol

Related Publications

Alan M Rosenwasser, and Michael C Fixaris
October 1999, Physiology & behavior,
Alan M Rosenwasser, and Michael C Fixaris
September 1982, Biochemical pharmacology,
Alan M Rosenwasser, and Michael C Fixaris
June 2002, Alcoholism, clinical and experimental research,
Alan M Rosenwasser, and Michael C Fixaris
August 1994, Behavioral neuroscience,
Alan M Rosenwasser, and Michael C Fixaris
September 1996, European journal of pharmacology,
Alan M Rosenwasser, and Michael C Fixaris
March 2009, Behavior genetics,
Alan M Rosenwasser, and Michael C Fixaris
June 1984, Toxicology,
Alan M Rosenwasser, and Michael C Fixaris
April 2023, Genes, brain, and behavior,
Alan M Rosenwasser, and Michael C Fixaris
August 1993, Brain research,
Alan M Rosenwasser, and Michael C Fixaris
August 2005, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!