Structural composition of alternative complex III: variations on the same theme. 2013

Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.

Alternative complex III forms a recently identified family of enzymes with quinol:electron acceptor oxidoreductase activity. First biochemical and genomic analyses showed that ACIII is composed of six to eight subunits, most of which homologous to different proteins or domains already observed in other known enzymatic complexes. The increasing number of completely sequenced genomes led us to perform a new search for the genes coding for the different ACIII subunits. We have identified a larger number of gene clusters coding for ACIII, still confined to the bacterial domain, but extended to classes in which it was not observed before. We also found an unanticipated diversity in gene clusters, both in terms of its constitution and organization. The several unexpected gene arrangements brought new perspectives to the role of the different subunits of ACIII, namely in quinone binding and in proton translocation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.

UI MeSH Term Description Entries
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014450 Electron Transport Complex III A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein
D023061 Gene Order The sequential location of genes on a chromosome. Gene Arrangement,Gene Position,Arrangement, Gene,Arrangements, Gene,Gene Arrangements,Gene Positions,Order, Gene,Position, Gene,Positions, Gene

Related Publications

Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
May 1947, Anales espanoles de odontoestomatologia,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
January 1996, Developmental genetics,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
January 2008, KOS,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
January 2006, Journal of cellular and molecular medicine,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
June 2012, Medical hypotheses,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
January 1997, Trends in biochemical sciences,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
July 1991, Trends in biochemical sciences,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
April 2017, BioEssays : news and reviews in molecular, cellular and developmental biology,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
January 2007, Journal of experimental botany,
Patrícia N Refojo, and Miguel A Ribeiro, and Filipa Calisto, and Miguel Teixeira, and Manuela M Pereira
March 2018, American journal of respiratory cell and molecular biology,
Copied contents to your clipboard!