Three-component lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a. 2013

Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
Research and Innovation Centre, Fondazione Edmund Mach, Michele all'Adige, Italy.

Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.

UI MeSH Term Description Entries
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009952 Ornithine An amino acid produced in the urea cycle by the splitting off of urea from arginine. 2,5-Diaminopentanoic Acid,Ornithine Dihydrochloride, (L)-Isomer,Ornithine Hydrochloride, (D)-Isomer,Ornithine Hydrochloride, (DL)-Isomer,Ornithine Hydrochloride, (L)-Isomer,Ornithine Monoacetate, (L)-Isomer,Ornithine Monohydrobromide, (L)-Isomer,Ornithine Monohydrochloride, (D)-Isomer,Ornithine Monohydrochloride, (DL)-Isomer,Ornithine Phosphate (1:1), (L)-Isomer,Ornithine Sulfate (1:1), (L)-Isomer,Ornithine, (D)-Isomer,Ornithine, (DL)-Isomer,Ornithine, (L)-Isomer,2,5 Diaminopentanoic Acid
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D002103 Cadaverine A foul-smelling diamine formed by bacterial DECARBOXYLATION of LYSINE. It is also an intermediate secondary metabolite in lysine-derived alkaloid biosynthetic pathways (e.g., QUINOLIZIDINES and LYCOPODIUM). 1,5-Pentanediamine,BioDex 1,Pentamethylenediamine,1,5 Pentanediamine
D003653 Decarboxylation The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound. Decarboxylations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D026905 Amino Acid Transport Systems Cellular proteins and protein complexes that transport amino acids across biological membranes. Amino Acid Permeases,Amino Acid Transporters,Amino Acid Permease,Amino Acid Transporter,Permease, Amino Acid,Permeases, Amino Acid,Transporters, Amino Acid

Related Publications

Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
June 1979, Biochimica et biophysica acta,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
December 1999, Acta crystallographica. Section D, Biological crystallography,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
December 1994, Journal of bacteriology,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
August 1977, Acta physiologica Scandinavica,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
March 1989, The Journal of biological chemistry,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
June 1980, The Journal of biological chemistry,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
July 1967, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
January 1981, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
July 2004, International journal of systematic and evolutionary microbiology,
Andrea Romano, and Hein Trip, and Juke S Lolkema, and Patrick M Lucas
December 1997, Biochemistry,
Copied contents to your clipboard!