Therapeutic potential of fetal mesenchymal stem cells. 2013

Maria G Roubelakis

UI MeSH Term Description Entries
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D045164 Mesenchymal Stem Cell Transplantation Transfer of MESENCHYMAL STEM CELLS between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Stem Cell Transplantation, Mesenchymal,Transplantation, Mesenchymal Stem Cell
D053686 Fetal Stem Cells Cells derived from a FETUS that retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Cell, Fetal Stem,Cells, Fetal Stem,Fetal Stem Cell,Stem Cell, Fetal,Stem Cells, Fetal
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells

Related Publications

Maria G Roubelakis
September 2003, Annals of the Academy of Medicine, Singapore,
Maria G Roubelakis
January 2022, International journal of molecular sciences,
Maria G Roubelakis
January 2024, Current stem cell research & therapy,
Maria G Roubelakis
October 2017, Journal of molecular endocrinology,
Maria G Roubelakis
March 2011, Gastroenterology,
Maria G Roubelakis
January 2020, Frontiers in bioengineering and biotechnology,
Maria G Roubelakis
February 2005, Current drug targets,
Maria G Roubelakis
January 2005, Endocrine development,
Maria G Roubelakis
January 2013, Stem cells international,
Copied contents to your clipboard!