Cold-induced ultrastructural changes in bull and boar sperm plasma membranes. 1990

F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.

The effect of low temperatures on the ultrastructure of the plasma membrane of bull and boar spermatozoa was investigated. Cold-induced changes in the organization of sperm plasma membrane components were demonstrated by the use of fast-freezing combined with freeze-fracture electron microscopy. This preparation technique ensures fixation without artifacts. At 38 degrees C bull and boar spermatozoa exhibited a random distribution of intramembranous particles over the plasma membrane of both head and tail. Exposure to 0 degree C resulted in redistribution of the intramembranous particles: on the head and principal piece of bull spermatozoa and on the principal piece of boar spermatozoa, particle-free areas were observed, whereas on the boar sperm head, particle aggregates were present. The original particle distribution was restored upon rewarming of bull and boar spermatozoa to 38 degrees C, as well as after freezing and thawing of bull spermatozoa. Dilution of bull and boar semen into Tris-dilution buffer and Beltsville Thaw Solution-dilution buffer, respectively, could not prevent cold-induced redistribution of intramembranous particles. The observed particle reorganization upon cooling was interpreted as the result of lateral phase separation in the plasma membrane. Species-dependent differences in cold-induced ultrastructural changes were considered to be determined by lipid composition and asymmetry of the plasma membrane, and might be related to differences in cold resistance between species.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003451 Cryoprotective Agents Substances that provide protection against the harmful effects of freezing temperatures. Cryoprotective Agent,Cryoprotective Effect,Cryoprotective Effects,Agent, Cryoprotective,Agents, Cryoprotective,Effect, Cryoprotective,Effects, Cryoprotective
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
September 1982, Biochemical and biophysical research communications,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
May 1985, Biochimica et biophysica acta,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
June 1990, Molecular reproduction and development,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
April 1992, Cryobiology,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
January 2007, Journal of andrology,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
September 2013, Theriogenology,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
May 1989, Biochemical and biophysical research communications,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
June 1986, Biochemistry international,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
January 1991, Archiv fur experimentelle Veterinarmedizin,
F E De Leeuw, and H C Chen, and B Colenbrander, and A J Verkleij
September 1982, Biochemical and biophysical research communications,
Copied contents to your clipboard!