[Effects of electrical stimulation of sciatic nerve on synaptic plasticity of spinal dorsal horn, hippocampal CA1 region and spinal c-fos, hippocampal CA1 region expression in neonatal rats]. 2012

Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
Wuhan Municipal Healthcare Center for Women and Children, Wuhan, China.

OBJECTIVE To explore the response to nociceptive stimuli in spinal cord of neonatal rat and observe the electrical stimulation of sciatic nerve on synaptic plasticity of spinal dorsal horn, hippocampal CA1 region and spinal c-fos, hippocampal CA1 region expression in neonatal rats. METHODS The rats were divided into neonatal and adult groups. The evoked potentials of left spinal dorsal horn from T13-L1 and right hippocampal CA1 region were recorded. After conditional electric stimulations, the potential amplitudes were recorded. When the incubation period reached 120 min, D-AP5 was added to spinal cord of rats and resulting changes in field potential and c-fos expression were recorded. RESULTS Long-term potentiation (LTP) in neonatal rats was mainly evoked by A-type nerve fibers whereas LTP in adult rats was mainly evoked by C-type nerve fibers. C-fos expression was significantly increased in superficial, deep layers of spinal dorsal horn, ventral horn and hippocampal CA1 region in neonatal rats. CONCLUSIONS Pain signals change with age.

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
January 2009, Neuroscience letters,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
August 2000, Experimental neurology,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
January 2002, Neuro-Signals,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
June 2009, Neuroscience research,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
May 2000, Neuroscience letters,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
April 1994, Brain research,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
November 2007, Diabetes/metabolism research and reviews,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
April 2008, Sheng li xue bao : [Acta physiologica Sinica],
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
June 2007, Acta anaesthesiologica Taiwanica : official journal of the Taiwan Society of Anesthesiologists,
Jiang Wu, and De-ying Huang, and Jie Cheng, and Xue-ling Chen, and Qiang Xiang
July 1999, Neuroscience letters,
Copied contents to your clipboard!