Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight. 1990

J S Taylor, and H F Lu, and J J Kotyk
Department of Chemistry, Washington University, St. Louis, MO 63130.

It has been found that the (6-4) photoproduct of thymidylyl-(3'----5')-deoxycytidine (TpdC) is converted quantitatively to a further photoproduct upon exposure to Pyrex-filtered medium pressure mercury arc light. Infrared UV, FAB MS, 1H NMR, 13C NMR and 31P NMR spectra were obtained for both the (6-4) product and its photolysis product. 1H NMR assignments were made on the basis of proton decoupling and homonuclear shift correlated experiments and 13C NMR assignments were made on the basis of proton-detected heteronuclear shift correlated experiments. The Dewar pyrimidinone structure was assigned to the photolysis product by analysis of the spectral data in comparison to those of the Dewar photoproduct of TpT and other Dewar pyrimidinones. The (6-4) product of TpdC is the second member of the class of (6-4) photoproducts that has been found to photoisomerize to its Dewar valence isomer upon exposure to wavelengths greater than 280 nm, the first being that of TpT (Taylor and Cohrs, 1987, J. Am. Chem. Soc. 109, 2834-2835). These results further support the proposal that all members of the (6-4) photoproduct class are converted to their Dewar valence isomers upon exposure to sunlight.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013472 Sunlight Irradiation directly from the sun. Sunshine
D015226 Dinucleoside Phosphates A group of compounds which consist of a nucleotide molecule to which an additional nucleoside is attached through the phosphate molecule(s). The nucleotide can contain any number of phosphates. Bis(5'-Nucleosidyl)Oligophosphates,Bis(5'-Nucleosidyl)Phosphates,Deoxydinucleoside Phosphates,Dinucleoside Diphosphates,Dinucleoside Monophosphates,Dinucleoside Oligophosphates,Dinucleoside Tetraphosphates,Dinucleoside Triphosphates,Bis(5'-Nucleosidyl)Tetraphosphate,Dinucleoside Polyphosphates,Diphosphates, Dinucleoside,Monophosphates, Dinucleoside,Oligophosphates, Dinucleoside,Phosphates, Deoxydinucleoside,Phosphates, Dinucleoside,Polyphosphates, Dinucleoside,Tetraphosphates, Dinucleoside,Triphosphates, Dinucleoside

Related Publications

J S Taylor, and H F Lu, and J J Kotyk
January 2008, Nucleic acids symposium series (2004),
J S Taylor, and H F Lu, and J J Kotyk
September 2011, The journal of physical chemistry. B,
J S Taylor, and H F Lu, and J J Kotyk
July 2020, Science advances,
J S Taylor, and H F Lu, and J J Kotyk
March 1992, Journal of photochemistry and photobiology. B, Biology,
J S Taylor, and H F Lu, and J J Kotyk
January 2011, Photochemistry and photobiology,
Copied contents to your clipboard!