We report a novel class of transmission electron microscope (TEM), the difference-contrast electron microscope (DTEM), which displays nanostructures of thin specimen objects in a topographical manner. Topography obtained by the difference-contrast develops shadowgraphs in pseudo three-dimension, namely volume-like representation of projected objects as if things are illuminated by light from one direction. The specific optical device tomanipulate electron waves for DTEM is the hemicircular π phase-plate, which appears to be quite distinguishable from the Zernike phase plate utilized in Zernike phase-contrast TEM, while both have to be placed onto the back-focal plane of the objective lens. The topographic images obtained with DTEM for ultrathin sections of kidney cells were compared with those obtained with conventional TEM. DTEM confirmed the experimental advantage of high contrast topography by visualizing ultrastructural details inside the cells.
| UI | MeSH Term | Description | Entries |
|---|