Conformational transition between native and reactive center cleaved forms of alpha 1-antitrypsin by Fourier transform infrared spectroscopy and small-angle neutron scattering. 1990

P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
Department of Protein and Molecular Biology, Royal Free Hospital School of Medicine, London, U.K.

alpha 1-Antitrypsin (alpha 1-AT) is the best-characterized member of the serpin superfamily of plasma proteins. Protease inhibitor members of this family undergo a characteristic reactive-center cleavage during expression of their inhibitory activity. The physical basis of this transition in alpha 1-AT from the stressed native conformation to the more stable reactive center cleaved (split) form was studied by Fourier transform infrared (FT-IR) spectroscopy and neutron scattering. The FT-IR spectra show that, while split alpha 1-AT has three intense well-resolved components associated with the presence of antiparallel beta-sheet and alpha-helix conformations, the amide I band of native alpha 1-AT has only one intense component, associated with the presence of beta-sheet structure. 1H-2H exchange within the polypeptide backbone, studied by FT-IR and NMR spectroscopy, shows that the native form undergoes greater exchange than the split form. Under the same conditions, neutron scattering shows no differences in the radius of gyration RG of the native and the split forms. In contrast, in high concentrations of phosphate approaching those used for crystallization, the native form (unlike the split form) undergoes dimerization. These data indicate that the conformational transition largely involves localized secondary and tertiary structure rearrangements. We propose that the energetically stressed native alpha 1-AT structure is the consequence of a significantly reduced number of hydrogen bonds in secondary structure components and that reactive-site cleavage between Met358 and Ser359 is the key for the development of the fully hydrogen bonded more stable serpin structure.

UI MeSH Term Description Entries
D009502 Neutrons Electrically neutral elementary particles found in all atomic nuclei except light hydrogen; the mass is equal to that of the proton and electron combined and they are unstable when isolated from the nucleus, undergoing beta decay. Slow, thermal, epithermal, and fast neutrons refer to the energy levels with which the neutrons are ejected from heavier nuclei during their decay. Neutron
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR

Related Publications

P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
April 1990, The Biochemical journal,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
May 2013, International journal of biological macromolecules,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
September 2019, The Review of scientific instruments,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
November 2007, Biomacromolecules,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
January 2000, Journal of molecular biology,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
February 2000, Journal of molecular biology,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
November 1981, Biochemical and biophysical research communications,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
October 2007, Applied spectroscopy,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
October 1994, Proteins,
P I Haris, and D Chapman, and R A Harrison, and K F Smith, and S J Perkins
October 2016, Journal of applied crystallography,
Copied contents to your clipboard!