Detection of conformational changes in complex III of the respiratory chain by a maleimido spin label. 1979

U DasGupta, and D C Wharton, and J S Rieske

Changes in the conformation of Complex III (CoQH2-cytochrome c reductase) of the mitochondrial respiratory chain were detected upon oxidoreduction using the nitroxide spin label, 3-(maleimidomethyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl. EPR spectra of the spin label show a transition from a greater to a lesser degree of immobilization when the labeled enzyme, reduced either with ascorbate or sodium dithionite, is oxidized with potassium ferricyanide or ferricytochrome c. These observations are interpreted to indicate that Complex III is more compact in the reduced state at least in the locality of the spin label. An apparent increase in the concentration of total spins during oxidation of the complex suggests change in the interaction between the spin label and other paramagnetic centers and not an oxidation of spin label, itself, since reduced free spin label could not be reoxidized. Addition of antimycin A had no effect on the EPR spectrum of the spin-labeled enzyme, indicating that this inhibitor does not initiate a conformational change in the region of the spin label. Experiments in which N-ethyl-[2-3H] maleimide was bound to Complex III show that binding occurs primarily to a subunit with a molecular weight of 45,000. Although no qualitative differences were observed, it was found that less radioactivity appears in samples reduced with dithionite than in those reduced with ascorbate. This difference appears to be caused by decomposition products of dithionite.

UI MeSH Term Description Entries
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004227 Dithionite Dithionite. The dithionous acid ion and its salts. Hyposulfite,Sodium Dithionite,Dithionite, Sodium

Related Publications

U DasGupta, and D C Wharton, and J S Rieske
December 2017, European biophysics journal : EBJ,
U DasGupta, and D C Wharton, and J S Rieske
April 1983, Biophysical chemistry,
U DasGupta, and D C Wharton, and J S Rieske
October 1974, Biochemical and biophysical research communications,
U DasGupta, and D C Wharton, and J S Rieske
April 1975, Annals of the New York Academy of Sciences,
U DasGupta, and D C Wharton, and J S Rieske
January 1976, European journal of biochemistry,
U DasGupta, and D C Wharton, and J S Rieske
November 1993, Science (New York, N.Y.),
U DasGupta, and D C Wharton, and J S Rieske
June 1979, European journal of biochemistry,
U DasGupta, and D C Wharton, and J S Rieske
January 1974, Journal of biochemistry,
U DasGupta, and D C Wharton, and J S Rieske
October 2012, Journal of chemical theory and computation,
Copied contents to your clipboard!