Nicotine effects in mouse hippocampus are blocked by mecamylamine, but not other nicotinic antagonists. 1990

R K Freund, and D A Jungschaffer, and A C Collins
Institute for Behavioral Genetics, University of Colorado, Boulder 80309.

Previous data indicated that bath-application of nicotine to mouse hippocampal slices resulted in a concentration-dependent increase in the amplitude of the orthodromic population spike and the appearance of multiple population spikes in the CA1 pyramidal cell layer. d-Tubocurarine (4-100 microM), alpha-bungarotoxin (10-160 microM), and atropine (40-200 microM) had similar effects, although for alpha-bungarotoxin these excitatory effects were transient. Mecamylamine (1.6-3.2 mM) inhibited the population spike, while hexamethonium (3.2 mM) had no effect. These cholinergic antagonists were tested for their ability to block excitatory effects of nicotine (800 microM) at antagonist concentrations which were at or near threshold for intrinsic effects. Of the 5 antagonists tested, only mecamylamine (400 microM) effectively inhibited the nicotine-induced increase of the population spike amplitude and the appearance of multiple population spikes. These results suggest that nicotine exerts electrophysiological effects via a subclass of nicotinic cholinergic receptors that is neither neuromuscular nor ganglionic in the classical sense; these brain nicotinic receptors are sensitive to mecamylamine, but not to hexamethonium, alpha-bungarotoxin, or D-tubocurarine.

UI MeSH Term Description Entries
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

R K Freund, and D A Jungschaffer, and A C Collins
October 2001, Life sciences,
R K Freund, and D A Jungschaffer, and A C Collins
April 1999, Brain research bulletin,
R K Freund, and D A Jungschaffer, and A C Collins
October 1994, The Journal of pharmacology and experimental therapeutics,
R K Freund, and D A Jungschaffer, and A C Collins
December 2016, British journal of pharmacology,
R K Freund, and D A Jungschaffer, and A C Collins
August 2006, Experimental neurology,
R K Freund, and D A Jungschaffer, and A C Collins
September 2009, Journal of psychopharmacology (Oxford, England),
R K Freund, and D A Jungschaffer, and A C Collins
June 1994, Psychopharmacology,
Copied contents to your clipboard!