Left ventricular pressure effects on right ventricular pressure and volume outflow. 1990

R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
Department of Surgery, Duke University Medical Center, Durham, North Carolina.

Massive destruction of the right ventricular free wall has been shown to cause only mild hemodynamic alterations. Further, the derivative of right ventricular (RV) pressure (P) is broad or double peaked, with one peak occurring coincidentally with peak left ventricular (LV) dP/dt. Both observations suggest a direct LV assistance to RV function. Since the ventricles contract nearly simultaneously, the relative contribution of LV to RV pump function has been difficult to determine. This LV assistance was quantified in six canine experiments using a unique electrically isolated RV preparation. While on total cardiopulmonary bypass, the RV free wall was electrically isolated from the remainder of the heart. This preparation allowed for wide variations in the timing interval between RV and LV contractions. Double-peaked waveforms for RVP and pulmonary flow (RVF) occurred over a wide range (0 to 300 ms) of pacing intervals between the RV and LV. One derivative peak always followed RV contraction for RVP and RVF (r = 0.971 +/- .011, P less than 0.01: r = 0.972 +/- .012, p less than 0.01; respectively). The second derivative peak was unrelated to the RA-RV pacing interval (r = 0.297 +/- .191, P greater than 0.5 RVP; 4 = 0.237 +/- .278, P greater than 0.5 RVF), but corresponded to the maximal LVP rise. Additionally, the magnitude of the two derivative peaks was similar when the ventricles contracted synchronously. When RV contraction preceded or followed LV contraction, the derivative peak associated with LV contraction was significantly greater (P less than 0.05, range 2.1 +/- 0.6 to 6.7 +/- 1.6 for RVP; P less than 0.05 range 1.9 +/- 0.4 to 6.7 +/- 1.5 for RVF) than the derivative associated with RV contraction. These data demonstrate a normally present, large LV assistance to RV contraction and may help to explain the RV response to myocardial infarction.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
September 1971, Circulation,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
December 1976, Journal of applied physiology,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
April 2022, The Journal of thoracic and cardiovascular surgery,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
July 1986, The American review of respiratory disease,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
February 2003, The Journal of thoracic and cardiovascular surgery,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
June 2017, Clinical science (London, England : 1979),
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
November 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
October 2014, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
July 1972, British heart journal,
R J Damiano, and J L Cox, and J E Lowe, and W P Santamore
January 1984, The American journal of physiology,
Copied contents to your clipboard!