Canine cardiac sarcolemmal vesicles demonstrate rapid initial Na(+)-Ca2+ exchange activity. 1990

C L Gruver, and A M Katz, and F C Messineo
Department of Medicine, University of Connecticut Health Center, Farmington 06032.

To identify a rapid, uninhibited rate of exchange activity, we investigated in canine sarcolemmal vesicles the rapid kinetics of Na(+)-Ca2+ exchange. Sarcolemmal vesicles were incubated in 160 mM NaCl and 20 mM HEPES at 25 degrees C (pH 7.4) and actively loaded with 45Ca2+ for 2 minutes by Na(+)-Ca2+ exchange. After further uptake was inhibited by dilution into 0.15 mM Na(+)-free EGTA, sarcolemmal vesicles were immobilized on a rapid filtration apparatus that allowed millisecond resolution of 45Ca2+ fluxes. In the presence of external NaCl (Na+o) but not other monovalent cations (i.e., K+, Li+), a biphasic pattern of Ca2+ release was observed--an initial brief and rapid rate of Ca2+ release followed by a second slower, prolonged phase of Ca2+ release. Semilogarithmic plots of sarcolemmal Ca2+ content versus time were not linear but were consistent with a biexponential rate of Na+o-induced Ca2+ release during the first several seconds of the exchange reaction. The fast phase of Na+o-stimulated Ca2+ release was several thousand-fold more rapid than that in the absence of Na+o. Both phases of Ca2+ release showed a similar Na+o dependence (Km, approximately 12 mM) with evidence of a positive cooperative effect of Na+. Vmax of the fast and slow phases were approximately 37.0 and approximately 0.76 nmol/mg/sec, respectively. Using rapid-reaction techniques, we demonstrated in the present study that the initial velocity of sarcolemmal Na(+)-Ca2+ exchange activity is greater than previously reported in sarcolemmal vesicles and that this exchange process exhibits complex rate behavior with a biphasic pre-steady state kinetic pattern.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas

Related Publications

C L Gruver, and A M Katz, and F C Messineo
February 1982, Circulation research,
C L Gruver, and A M Katz, and F C Messineo
March 1987, Biochimica et biophysica acta,
C L Gruver, and A M Katz, and F C Messineo
April 1988, Biochimica et biophysica acta,
C L Gruver, and A M Katz, and F C Messineo
May 1982, The Journal of biological chemistry,
C L Gruver, and A M Katz, and F C Messineo
March 1998, The American journal of physiology,
C L Gruver, and A M Katz, and F C Messineo
November 1988, Molecular and cellular biochemistry,
C L Gruver, and A M Katz, and F C Messineo
April 1985, The Journal of biological chemistry,
C L Gruver, and A M Katz, and F C Messineo
January 1988, Advances in experimental medicine and biology,
C L Gruver, and A M Katz, and F C Messineo
August 1985, Biochimica et biophysica acta,
C L Gruver, and A M Katz, and F C Messineo
September 1982, The American journal of physiology,
Copied contents to your clipboard!