A cadherin-like protein in eggs and cleaving embryos of Xenopus laevis is expressed in oocytes in response to progesterone. 1990

Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
Department of Pharmacology, University of California, San Francisco 94143.

A new cadherin-like protein (CLP) was identified in oocytes, eggs, and cleavage stage embryos of Xenopus laevis. As a probe for detecting new cadherin proteins, an antiserum was raised to a 17 amino acid peptide derived from a highly conserved region in the cytoplasmic domain of all cadherins which have been sequenced to date. This antipeptide antibody recognized Xenopus E-cadherin and a polypeptide in Xenopus brain extracts similar to N-cadherin, which were independently identified by specific mAbs. In extracts of eggs and midblastula stage embryos the antipeptide antibody recognized specifically a 120-kD glycoprotein that migrated faster on SDS gels than the 140-kD E- and N-cadherin polypeptides. This 120-kD polypeptide was not recognized by the mAbs specific to E- and N-cadherin. In fact, E- and N-cadherin were not detectable in eggs or midblastula stage embryos. The possible relationship of CLP to P-cadherin, which has been identified in mouse tissues, has not yet been determined. CLP was synthesized by large, late stage oocytes. When oocytes were induced to mature in vitro with progesterone it accumulated to the same level found in normally laid eggs. It did not accumulate further to any significant extent during the early cleavage stages. CLP was detected on the surface of stage 8 blastomeres by cell surface biotinylation, but only after the tight junctions of the blastula epithelium were opened by removal of Ca2+. We conclude that CLP is a maternally encoded protein that is the major, if not only, cadherin-related protein present in the earliest stages of Xenopus development, and we propose that it may play a role in the Ca2(+)-dependent adhesion and junction formation between cleavage stage blastomeres.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002970 Cleavage Stage, Ovum The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA. Segmentation Stage, Ovum,Cleavage Stages, Ovum,Ovum Cleavage Stage,Ovum Cleavage Stages,Ovum Segmentation Stage,Ovum Segmentation Stages,Segmentation Stages, Ovum
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
December 1983, The Journal of cell biology,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
June 1988, Development (Cambridge, England),
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
November 1968, Journal of embryology and experimental morphology,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
January 1991, Methods in cell biology,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
March 1977, Experimental cell research,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
March 1975, General and comparative endocrinology,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
August 2011, Zoological science,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
January 1979, Differentiation; research in biological diversity,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
January 1987, Biology of the cell,
Y S Choi, and R Sehgal, and P McCrea, and B Gumbiner
June 2007, CSH protocols,
Copied contents to your clipboard!