Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. 1979

M D Cahalan, and W Almers

Quaternary strychnine blocks sodium channels from the axoplasmic side, probably by insertion into the inner channel mouth. Block is strongly voltage dependent, being more pronounced in depolarized than in resting axons. Using potential steps as a means to modulate the level of block, we investigate strychnine effects on sodium and gating currents at +50 and -50 mV. We analyze our data in terms of the simplest possible model, wherein only an open channel may receive and retain a strychnine molecule. Our main findings are (a) block by strychnine and inactivation resemble each other and (b) block of sodium and gating currents by strychnine happen with closely similar time-courses. Our data support the hypothesis of Armstrong and Bezanilla (1977) wherein an endogenous blocking particle causes inactivation by inserting itself into the inner mouth of the sodium channel. Quaternary strychnine may act as an artificial substitute for the hypothetical endogenous blocking particle. Further, we suggest that at least 90% of the rapid asymmetrical displacement current in squid axons is sodium channel gating current, inasmuch as quaternary strychnine can block 90% of the displacement current simultaneously with sodium current.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013331 Strychnine An alkaloid found in the seeds of STRYCHNOS NUX-VOMICA. It is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea, and as a rat poison. Strychnine Nitrate,Nitrate, Strychnine
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode

Related Publications

M D Cahalan, and W Almers
March 1991, The Journal of membrane biology,
M D Cahalan, and W Almers
February 1990, The Journal of general physiology,
M D Cahalan, and W Almers
October 2000, The Biological bulletin,
M D Cahalan, and W Almers
June 1981, The Journal of physiology,
M D Cahalan, and W Almers
January 2003, Journal of neurophysiology,
M D Cahalan, and W Almers
October 1978, The Journal of physiology,
M D Cahalan, and W Almers
November 1983, The Journal of general physiology,
M D Cahalan, and W Almers
December 1977, Annals of the New York Academy of Sciences,
M D Cahalan, and W Almers
January 1979, Bulletin of mathematical biology,
M D Cahalan, and W Almers
October 1985, Biophysical journal,
Copied contents to your clipboard!