Thermal tolerance during S phase for cell killing and chromosomal aberrations. 1990

X L Li, and R S Wong, and W C Dewey
Radiation Oncology Research Laboratory, University of California, San Francisco 94143-0806.

Synchronous Chinese hamster ovary cells in early S phase were obtained by selecting mitotic cells, accumulating them at the G1/S border by incubating them in aphidicolin for 12 h, and then incubating them for 2 h after releasing them from the aphidicolin block. To determine if thermotolerance could be induced, the cells were heated at 43 degrees C for 20 min in early S phase, incubated for 160 min, and then heated a second time at 43 degrees C for different durations (30-100 min). For the control, nontolerant population, the cells in early S phase were incubated for 50 min and then heated once at 43 degrees C for different durations (20-60 min). Flow cytometric analysis indicated that the population receiving the second heat dose was in the same part of S phase as the population receiving the single heat dose. A comparison of the heat response for the two populations indicated that heating during early S phase induced thermotolerance for both cell killing and chromosomal aberrations; i.e., for 10% survival, which corresponded to 10% of the cells being cytologically normal, the thermal dose was twofold greater in the thermotolerant cells than in the control, nontolerant cells. Furthermore, this thermotolerance developed during S phase. These observations support the hypothesis that heating during S phase kills cells primarily by inducing chromosomal aberrations.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000064 Acclimatization Adaptation to a new environment or to a change in the old. Acclimation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

X L Li, and R S Wong, and W C Dewey
December 1982, Radiation research,
X L Li, and R S Wong, and W C Dewey
January 1993, Radiation research,
X L Li, and R S Wong, and W C Dewey
January 1993, Environmental and molecular mutagenesis,
X L Li, and R S Wong, and W C Dewey
June 1987, Ophthalmic paediatrics and genetics,
X L Li, and R S Wong, and W C Dewey
May 1995, International journal of radiation biology,
X L Li, and R S Wong, and W C Dewey
July 1991, The New England journal of medicine,
Copied contents to your clipboard!