Molecular alterations in metaplastic breast carcinoma. 2013

Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia. caroline.cooper@sswahs.nsw.gov.au

Metaplastic carcinoma of the breast is a rare and heterogeneous subtype of breast carcinoma with a generally poor outcome, and few therapeutic options once disease recurs or progresses. Metaplastic carcinomas of the breast are usually of a larger size at diagnosis, with less frequent nodal metastasis compared with invasive ductal carcinoma no special type, and lack hormone and HER2 receptor expression. Recent research has revealed some potentially actionable genetic changes in a subset of these rare tumours. However, ongoing efforts to further characterise the genetic basis and the molecular alterations underlying the distinctive morphological and clinical characteristics of these tumours are needed in order to identify new targets for treatment. This review will describe the theories of pathogenesis of metaplastic breast carcinoma, and highlight genetic changes and potential therapeutic targets in this generally poor prognosis malignancy.

UI MeSH Term Description Entries
D008679 Metaplasia A condition in which there is a change of one adult cell type to another similar adult cell type.
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal

Related Publications

Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
December 2019, Archives of pathology & laboratory medicine,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
January 2023, Breast cancer research : BCR,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
July 1996, The Journal of the American Osteopathic Association,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
June 1988, Archives of pathology & laboratory medicine,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
July 2020, Cancers,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
April 2019, Human pathology,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
July 2010, The Indian journal of surgery,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
January 2022, Current medical imaging,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
June 2015, Archives of pathology & laboratory medicine,
Caroline Louise Cooper, and Rooshdiya Z Karim, and Christina Selinger, and Hugh Carmalt, and C Soon Lee, and Sandra A O'Toole
July 2010, Human pathology,
Copied contents to your clipboard!