Human plasma fibronectin structure probed by steady-state fluorescence polarization: evidence for a rigid oblate structure. 1990

M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
Sinai Samaritan Medical Center, University of Wisconsin Medical School, Milwaukee 53233.

In order to more clearly define the structure of human plasma fibronectin (PFn) under physiologic buffer conditions, we determined the mean harmonic rotational relaxation times (rho H) of PFn and the thrombin-derived 190/170-kDa PFn fragment using steady-state fluorescence polarization. These measurements utilized the long lifetime emission (tau = 1.2 X 10(-7) S) exhibited by 1-pyrenebutyrate, which had been covalently attached to amino groups at random sites on the PFn subunit. Our data analysis assumed that two independent processes depolarize the fluorescence exhibited by the dansylcadaverine and 1-pyrenebutyrate conjugates of PFn: (A) rapid (rho H less than 10(-9) S) "thermally-activated" localized rotational motion of the protein side chains bearing the fluorescent probe [Weber, G. (1952) Biochem. J. 51, 145-154] and (B) slow (rho H approximately 10(-6) S) temperature-independent global rotational motion of the whole PFn molecule. Since only the rho H associated with the latter process is a true hydrodynamic parameter (i.e., sensitive to size and/or shape of the PFn molecule), we utilized isothermal polarization measurements to discriminate against the interfering signal arising from "thermally activated" probe rotation. The rho H (4.4 +/- 0.9 microseconds) derived from an experiment in which pyrene-PFn fluorescence polarization was monitored as a function of sucrose concentration at constant temperature is 7 (+/- 1.4) times longer than that predicted for an equivalent hydrated sphere. We propose that "thermally activated" probe rotation gives rise to the nearly 100-fold shorter PFn rho H values previously reported in the literature. Consequently, our data exclude all previous models which invoke segmental flexibility of the PFn peptide backbone. The simplest hydrodynamic model supported by our fluorescence data is an oblate ellipsoid with an axial ratio of 15:1. All prolate models can be unambiguously excluded by this result. We estimate that the disk-shaped PFn molecule has a diameter and thickness of 30 and 2 nm, respectively. Electron microscopy of negatively stained PFn specimens on carbon also showed PFn to have a compact rounded structure. The much faster rotational relaxation rate of the pyrene-190/170-kDa PFn fragment (rho H = 0.92 +/- 0.11 microseconds) compared to pyrene-PFn indicated that this monomeric PFn fragment, like native PFn, had an oblate shape under physiologic buffer conditions.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
April 1982, Biochemistry,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
April 1987, Biophysical chemistry,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
August 2021, Journal of photochemistry and photobiology. B, Biology,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
April 1987, Biophysical chemistry,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
December 1983, Archives of biochemistry and biophysics,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
August 1998, Biophysical journal,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
January 2014, Methods in molecular biology (Clifton, N.J.),
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
September 1988, Physical review letters,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
March 1994, Biophysical journal,
M J Benecky, and C G Kolvenbach, and R W Wine, and J P DiOrio, and M W Mosesson
April 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!