Biomechanical properties of canine vertebral and internal carotid arteries. 1990

V Bérczi, and P Tóth, and A G Kovách, and E Monos
Experimental Research Department, Semmelweis University Medical School, Budapest, Hungary.

In order to understand the participation of the geometrical and elastic properties of the large cerebral arteries in the maintenance of brain circulatory homeostasis, biomechanical properties of isolated internal carotid artery (extracranial part) and vertebral artery (intrathoracic part) were investigated both in a relaxed and in an activated (3x 10(-6) mol.l-1 norepinephrine) state of the smooth muscle. Quasi-static large deformation mechanical test was carried out by means of changing the intraluminal pressure slowly (2.5 mmHg.sec-1) and cyclicly in a range of 0-250 mmHg at in vivo length while external diameter was recorded continuously as a function of the intraluminal pressure. Maximum active tangential strain was found to be -2.7 +/- 1.6% at 70 mmHg for the internal carotid artery, and -5.9 +/- 1.1% at 100 mmHg for the vertebral artery. Incremental elastic modulus decreased and distensibility increased in both arteries following smooth muscle activation, these alterations, however, were larger in the case of the vertebral artery. A U-shaped characteristic impedance of vertebral artery was found both in relaxed and in constricted states of this vessel. Minimum values for the relaxed and the activated segments were found at 90 mmHg and 120 mmHg, respectively. These results support the hypothesis that certain biomechanical properties of the large arteries, like impedance, can be regarded as controlled variables that may contribute to the optimization of circulatory functions.

UI MeSH Term Description Entries
D008297 Male Males
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002343 Carotid Artery, Internal Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose. Arteries, Internal Carotid,Artery, Internal Carotid,Carotid Arteries, Internal,Internal Carotid Arteries,Internal Carotid Artery
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004548 Elasticity Resistance and recovery from distortion of shape.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V Bérczi, and P Tóth, and A G Kovách, and E Monos
March 2021, BMJ case reports,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
January 2014, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
May 2008, Physiological measurement,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
February 1989, The Journal of trauma,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
November 1995, AJR. American journal of roentgenology,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
November 1983, Ceskoslovenska neurologie a neurochirurgie,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
June 2014, Journal of neurosurgery,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
May 1966, The Journal of pharmacology and experimental therapeutics,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
October 2005, American journal of physiology. Heart and circulatory physiology,
V Bérczi, and P Tóth, and A G Kovách, and E Monos
January 1988, International journal of clinical pharmacology, therapy, and toxicology,
Copied contents to your clipboard!