Serum-induced leakage of negatively charged liposomes at nanomolar lipid concentrations. 1990

S J Comiskey, and T D Heath
University of Wisconsin School of Pharmacy, Madison 53706.

An enzyme inhibition assay was developed to determine methotrexate-gamma-aspartate leakage from liposomes at lipid concentrations as low as 43 nM phospholipid. When negatively charged liposomes prepared with phosphatidylglycerol/cholesterol 67:33 or phosphatidylinositol/cholesterol 67:33 were incubated in 10% (v/v) newborn calf serum, they leaked over 90% of their contents in 2 min. In contrast, liposomes prepared from phosphatidylcholine/cholesterol 67:33 leaked 18% of their contents under the same conditions. The amount of negative charge required to induce liposome leakage was determined by preparing liposomes with varying amounts of phosphatidylglycerol and phosphatidylcholine. Extensive leakage was observed only from liposomes prepared with greater than 50 mol of phosphatidylglycerol per 100 mol of phospholipid. The effect of the phase transition temperature on leakage of negatively charged liposomes in 10% (v/v) serum was investigated by using a series of phosphatidylglycerols with varying acyl chain lengths. Liposomes prepared from distearoylphosphatidylglycerol or dipalmitoylphosphatidylglycerol leaked less than 18% of their contents in 10% serum, whereas liposomes prepared with dilauroylphosphatidylglycerol or unsaturated lipids leaked more than 70% of their contents. Lipoprotein removal from serum followed by treatment with lipid to remove residual apoproteins reduced the leakage from phosphatidylglycerol liposomes in 10% serum. Phosphatidylglycerol liposomes leaked 73% in the presence of human low-density lipoproteins, but only 29% in the presence of bovine apolipoprotein A-I, and 25% in the presence of human high-density lipoproteins. Phosphatidylglycerol/cholesterol and phosphatidylserine/cholesterol liposomes leaked 67% in 4 mg/mL bovine serum albumin purified by cold ethanol extraction. The leakage of liposomes in albumin solutions could be substantially reduced by treating the albumin with lipid.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Comiskey, and T D Heath
May 1989, Biochimica et biophysica acta,
S J Comiskey, and T D Heath
April 1983, The Japanese journal of experimental medicine,
S J Comiskey, and T D Heath
January 1994, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
S J Comiskey, and T D Heath
March 2000, International journal of pharmaceutics,
S J Comiskey, and T D Heath
December 2023, International journal of molecular sciences,
S J Comiskey, and T D Heath
November 1992, Biulleten' eksperimental'noi biologii i meditsiny,
S J Comiskey, and T D Heath
September 1987, Biochimica et biophysica acta,
S J Comiskey, and T D Heath
January 2007, Journal of controlled release : official journal of the Controlled Release Society,
S J Comiskey, and T D Heath
November 2004, Journal of colloid and interface science,
Copied contents to your clipboard!