Formation of thiol conjugates of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 and delta 12(E)-prostaglandin D2. 1990

J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.

Albumin catalyzes the transformation of prostaglandin D2 to 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 and to isomeric prostaglandin D2 compounds including delta 12(E)-prostaglandin D2. Both of these compounds are alpha,beta-unsaturated ketones, which should render them susceptible to nucleophilic addition. We therefore examined the ability of the compounds to form conjugates with thiols glutathione and cysteine. During incubation with excess glutathione, both 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 and delta 12(E)-prostaglandin D2 formed a conjugate. Conjugation of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 occurred very rapidly; approximately 70% was conjugated within 2 min. In contrast, conjugation of delta 12(E)-prostaglandin D2 with glutathione proceeded at a much slower rate; only 38% was conjugated at 60 min. The formation of both conjugates was enhanced by glutathione S-transferase. Conjugation of both compounds with cysteine was found to occur more rapidly than with glutathione. This effect was more pronounced with delta 12(E)-prostaglandin D2 in which 60% conjugated with cysteine within 2 min. These differences are likely attributed to greater steric hindrance for conjugation across the delta 12 double bond compared to that across the delta 9 bond. Analysis by fast atom bombardment mass spectrometry confirmed the formation of the glutathione conjugate of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2. Following prolonged incubation of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 with excess glutathione in the presence of glutathione S-transferase, a small quantity of a bis conjugate of this compound was also detected by mass spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011465 Prostaglandins, Synthetic Compounds obtained by chemical synthesis that are analogs or derivatives of naturally occurring prostaglandins and that have similar activity. PG Analog,PG Analogs,Prostaglandin Analog,Prostaglandin Analogs,Prostaglandin Analogue,Synthetic Prostaglandin,Prostaglandin Analogues,Synthetic Prostaglandins,Analog, PG,Analog, Prostaglandin,Analogs, PG,Analogs, Prostaglandin,Analogue, Prostaglandin,Analogues, Prostaglandin,Prostaglandin, Synthetic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000418 Albumins Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating. Albumin

Related Publications

J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
January 1988, International archives of allergy and applied immunology,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
March 1984, Proceedings of the National Academy of Sciences of the United States of America,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
November 1988, The Journal of biological chemistry,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
December 1982, Biochemical and biophysical research communications,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
March 2002, The Journal of biological chemistry,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
March 1985, Biochemical and biophysical research communications,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
March 2004, Life sciences,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
February 1987, Biochimica et biophysica acta,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
November 1987, Molecular pharmacology,
J Atsmon, and B J Sweetman, and S W Baertschi, and T M Harris, and L J Roberts
March 1974, Canadian journal of biochemistry,
Copied contents to your clipboard!