Accelerated essential fatty acid deficiency by delta 9 desaturase induction: dissociation between the effects on liver and other tissues. 1990

J B Lefkowith
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.

Essential fatty acid (EFA) deficiency is an important tool in probing the role of arachidonic acid (20:4(n-6] in pathophysiologic processes, but requires stringent and prolonged deprivation of (n-6) fatty acids. The present study investigated whether induction of the delta 9 desaturase, which is responsible for the synthesis of oleate, the precursor of 20:3(n-9) which uniquely accumulates in the deficiency state, might serve to accelerate the biochemical and biological effects of EFA deficiency. By alternately fasting and feeding animals a fat-free diet, it was possible to induce markedly the delta 9 desaturase selectively in liver. This dietary manipulation in consequence led to dramatic and rapid changes in hepatic phospholipid fatty acid composition. Within 2 weeks, 20:3(n-9) to 20:4(n-6) ratios in liver phospholipids were several fold greater than those seen in animals fed a fat-free diet alone. These changes, however, contrasted with those seen in the serum and other tissues. The mol% of 20:3(n-9) in serum was not increased by delta 9 desaturase induction and the 20:3(n-9) to 20:4(n-6) ratio was only modestly increased. The effects of delta 9 desaturase induction were even more attenuated in tissues other than the liver. Desaturase induction led to a doubling in the 20:3(n-9) to 20:4(n-6) ratio in phosphatidylcholine in renal cortex and heart, although the ratio in the other phospholipids was unaffected. The 20:3(n-9) to 20:4(n-6) ratio in peritoneal macrophage phospholipids was unaffected by desaturase induction. Thus, delta 9 desaturase induction greatly augments the synthesis of (n-9) fatty acids within the liver and leads to the rapid and substantial accumulation of the abnormal fatty acid, 20:3(n-9). This markedly augmented synthesis of hepatic 20:3(n-9), however, is not reflected in increased plasma levels of 20:3(n-9), and thus the effects of delta 9 desaturase induction are attenuated in tissues other than the liver. These data underscore the notable ability of the liver to maintain polyunsaturated fatty acid homeostasis.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005228 Fatty Acids, Essential Long chain organic acid molecules that must be obtained from the diet. Examples are LINOLEIC ACIDS and LINOLENIC ACIDS. Acids, Essential Fatty,Essential Fatty Acids
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J B Lefkowith
June 1992, Bio/technology (Nature Publishing Company),
J B Lefkowith
December 1989, Journal of bacteriology,
J B Lefkowith
September 2018, microPublication biology,
J B Lefkowith
May 1980, The Proceedings of the Nutrition Society,
Copied contents to your clipboard!