Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. 2013

Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland.

Coagulase-negative staphylococci (CNS; n=417) were isolated from bovine milk and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nineteen different species were identified, and Staphylococcus xylosus, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus sciuri were the most prevalent species. Resistance to oxacillin (47.0% of the isolates), fusidic acid (33.8%), tiamulin (31.9%), penicillin (23.3%), tetracycline (15.8%), streptomycin (9.6%), erythromycin (7.0%), sulfonamides (5%), trimethoprim (4.3%), clindamycin (3.4%), kanamycin (2.4%), and gentamicin (2.4%) was detected. Resistance to oxacillin was attributed to the mecA gene in 9.7% of the oxacillin-resistant isolates. The remaining oxacillin-resistant CNS did not contain the mecC gene or mecA1 promoter mutations. The mecA gene was detected in Staphylococcus fleurettii, Staphylococcus epidermidis, Staph. haemolyticus, and Staph. xylosus. Resistance to tetracycline was attributed to the presence of tet(K) and tet(L), penicillin resistance to blaZ, streptomycin resistance to str and ant(6)-Ia, and erythromycin resistance to erm(C), erm(B), and msr. Resistance to tiamulin and fusidic acid could not be attributed to an acquired resistance gene. In total, 15.1% of the CNS isolates were multidrug resistant (i.e., resistant to 2 or more antimicrobials). The remaining CNS isolates were susceptible to antimicrobials commonly used in mastitis treatment. Methicillin-resistant CNS isolates were diverse, as determined by mecA gene sequence analysis, staphylococcal cassette chromosome mec typing, and pulsed-field gel electrophoresis. Arginine catabolic mobile element types 1 and 3 were detected in both methicillin-resistant and methicillin-susceptible Staph. epidermidis and were associated with sequence types ST59 and ST111. Because this study revealed the presence of multidrug-resistant CNS in a heterogeneous CNS population, we recommend antibiogram analysis of CNS in persistent infections before treatment with antimicrobials.

UI MeSH Term Description Entries
D008414 Mastitis, Bovine INFLAMMATION of the UDDER in cows. Bovine Mastitides,Bovine Mastitis,Mastitides, Bovine
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003030 Coagulase Enzymes that cause coagulation in plasma by forming a complex with human PROTHROMBIN. Coagulases are produced by certain STAPHYLOCOCCUS and YERSINIA PESTIS. Staphylococci produce two types of coagulase: Staphylocoagulase, a free coagulase that produces true clotting of plasma, and Staphylococcal clumping factor, a bound coagulase in the cell wall that induces clumping of cells in the presence of fibrinogen. Staphylocoagulase,Staphylococcal Clumping Factor,Clumping Factor (Staphylococcal),Staphylococcus aureus clone pSCa2 of Coagulase,Staphylococcus aureus strain 213 of Coagulase,Staphylococcus aureus strain 8325-4 of Coagulase,Clumping Factor, Staphylococcal,Factor, Staphylococcal Clumping,Staphylococcus aureus strain 8325 4 of Coagulase
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
December 2019, Journal of dairy science,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
August 2002, Journal of dairy science,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
May 2011, Veterinary microbiology,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
January 2013, Polish journal of veterinary sciences,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
March 2012, Veterinary microbiology,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
August 2010, The Journal of antimicrobial chemotherapy,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
February 2011, Schweizer Archiv fur Tierheilkunde,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
September 2016, Polish journal of veterinary sciences,
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
June 2010, Journal of microbiology (Seoul, Korea),
Yvonne Frey, and Joan Peña Rodriguez, and Andreas Thomann, and Sybille Schwendener, and Vincent Perreten
April 1985, Journal of medical microbiology,
Copied contents to your clipboard!