Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. 1990

M R Ralph, and G D Block
Department of Biology, University of Virginia, Charlottesville 22901.

The ocular circadian rhythm of compound action potential frequency in Bulla gouldiana is driven by rhythmic changes in the membrane potential of putative circadian pacemaker cells. Changes in the membrane potential of these neurons is required for light-induced phase shifts of the rhythm. We have tested the proposition that these changes in membrane potential reflect underlying changes in ionic conductances. We have found that: 1. Membrane conductance in the dark is highest during the subjective night when the cells are hyperpolarized, decreases as the cells depolarize spontaneously near projected dawn and is lowest during the subjective day. The changes in membrane potential and conductance follow a similar time course. 2. Long pulses of light delivered to eyes during their subjective night produce a characteristic response: There is initially a large, phasic depolarization accompanied by a burst of CAPs; this is followed by a repolarizing phase during which CAP activity is reduced to zero; and finally a tonic depolarization develops that is accompanied by a resumption of CAP activity at a steady rate. 3. During the subjective night, the tonic depolarization is accompanied by a decrease in conductance compared to the previous dark value. However, light pulses of similar duration delivered to eyes during their subjective day causes tonic depolarizations and increased CAP activity, but no measurable change in conductance. 4. Membrane responses to light are sensitive to agents that reduce Ca2+ flux. Light pulses during the subjective night produce a phasic depolarization, but the repolarization phase is eliminated in low Ca2+/EGTA seawater and is reduced in 5 mM Ni2+.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008029 Lighting The illumination of an environment and the arrangement of lights to achieve an effect or optimal visibility. Its application is in domestic or in public settings and in medical and non-medical environments. Illumination
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M R Ralph, and G D Block
April 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
M R Ralph, and G D Block
July 1983, Science (New York, N.Y.),
M R Ralph, and G D Block
January 1990, Brain research,
Copied contents to your clipboard!