Lipid peroxidation in isolated hepatocytes. 1975

J Högberg, and S Orrenius, and R E Larson

Intracellular lipid peroxidation was initiated by the addition of ADP-complexed ferric iron to isolated rat hepatocytes and the reaction monitored by the thiobarbituric acid method or by measurement of the formation of conjugated dienes. Both the production of malondialdehyde (thiobarbituric-acid-reacting substances) and of conjugated dienes was dependent, on the ADP-Fe-3+ concentration in a dose-related fashion. Malondialdehyde formation stopped spontaneously within 20 min after the initiation of the reaction and the plateau reached was also related to the ADP-Fe-3+ concentration. Control experiments revealed that more than 90% of the malondialdehyde accumulating during the incubation period could be ascribed to intracellular production. The cellular NADPH/NADP+ ratio was always high and only slightly decreased upon ADP-Fe-3+-induced lipid peroxidation which, however, was associated with a marked decrease in the cellular glutathione concentration. The rate of accumulation of malondialdehyde as well as the final level reached during ADP-Fe-3+-initiated lipid peroxidation was increased by the addition of chloral hydrate. This apparent stimulatory effect could, however, be ascribed to the inhibition of the mitochondrial oxidation of the malondialdehyde formed during cellular lipid peroxidation, thus allowing more malondialdehyde to accumulate during the process. ADP-Fe-3+-induced cellular lipid peroxidation was associated with a decrease in the concentration of glutathione. Also, lowering of the intracellular glutathione level by the addition of diethyl maleate or by simply preincubating the hepatocytes (up to 50 min) promoted the ADP-Fe-3+ malondialdehyde production and formation of conjugated dienes. Furthermore, when cellular glutathione concentration had been lowered by preincubation of the hepatocytes, significant malondialdehyde production could be observed even at ADP-Fe-3+ concentrations which were too low to induce measurable lipid peroxidation in fresh hepatocytes. It is thus concluded that glutathione has an important role in the cell defence against lipid peroxidation and suggested that the isolated hepatocytes provide a suitable experimental model system for the characterization of this and other possible cellular defence mechanisms and how they are affected by the nutritional status of the donor animal.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008298 Maleates Derivatives of maleic acid (the structural formula (COO-)-C
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D011090 Polyenes Hydrocarbons with more than one double bond. They are a reduced form of POLYYNES. Cumulenes
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell

Related Publications

J Högberg, and S Orrenius, and R E Larson
May 1982, Research communications in chemical pathology and pharmacology,
J Högberg, and S Orrenius, and R E Larson
January 1982, Biochemical pharmacology,
J Högberg, and S Orrenius, and R E Larson
May 1980, Toxicology and applied pharmacology,
J Högberg, and S Orrenius, and R E Larson
December 1983, Chemico-biological interactions,
J Högberg, and S Orrenius, and R E Larson
June 1977, Naunyn-Schmiedeberg's archives of pharmacology,
J Högberg, and S Orrenius, and R E Larson
February 1988, Nihon juigaku zasshi. The Japanese journal of veterinary science,
J Högberg, and S Orrenius, and R E Larson
August 1986, Pharmacological research communications,
J Högberg, and S Orrenius, and R E Larson
November 1981, Lipids,
J Högberg, and S Orrenius, and R E Larson
March 1997, Biological & pharmaceutical bulletin,
J Högberg, and S Orrenius, and R E Larson
August 1984, Chemico-biological interactions,
Copied contents to your clipboard!