Effects of ethidium bromide on the respiratory chain and oligomycin-sensitive adenosine triphosphatase in purified mitochondria from the cellular slime mold Dicyostelium discoideum. 1975

R N Stuchell, and B I Weinstein, and D S Beattie

Mitochondria were isolated from the cellular slime mold. Dictyoostelium discoideum, and partially purified by sucrose density gradient fractionation. The most purified mitochondrial fraction from the gradient contained essentially no contaminating lysosomes and minimal amounts of contaminating peroxisomes as determined by the marker enzymes N-acetyl-glucosaminidase and catalase. A mitochondrial fraction with the same amount of lysosomal and peroxisomal contamination was also isolated from cells which had been treated with ethidium bromide for 5 days. The most purified mitochondrial fraction from control and ethidium bromide-treated cells had an identical buoyant density of 1.181 to 1.182 g per ml, suggesting that treatment with the drug does not result in any drastic structural changes in the mitochondrial membrane which would affect its density. In the purified mitochondria from ethidium bromide-treated cells, the content of cytochromes a-a3 was decreased over 80% and that of cytochrome oxidase and oligomycin sensitive ATPase were reduced approximately 50%. By contrast, the specific activities of NADH and succinate dehydrogenases were identical in the purified mitochondria from control and ethidium bromide-treated cells. Previously, we had reported that the specific activities of these two enzymes had nearly doubled in whole cells maintained in ethidium bromide for a time equivalent to six or seven generations after growth had stopped (Stuchell, R. N., Weinstein, B. I., and Beattie, D. S. (1973) Fed. Eur. Biochem. Coc Lett. 37, 23-26). These results suggest that continued formation of new mitochondrial membranes, with an identical complement of succinate and NADH dehydrogenases, must occur despite the cessation of cell growth which occurs as a result of the ethidium bromide induced loss of mitochondrial enzymes. Consequently, the amount of mitochondria, or mitochondrial protein per cell, calculated from the activity of NADH and succinate dehydrogenases has increased nearly 50%. Possible models to explain the control of mitochondrial biogenesis are discussed to explain these results.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009235 Myxomycetes A division of organisms that exist vegetatively as complex mobile plasmodia, reproduce by means of spores, and have complex life cycles. They are now classed as protozoa but formerly were considered fungi. Myxomycota,Protosteliomycetes,Slime Molds, Plasmodial,Slime Molds, True,Mold, Plasmodial Slime,Mold, True Slime,Molds, Plasmodial Slime,Molds, True Slime,Myxomycete,Myxomycotas,Plasmodial Slime Mold,Plasmodial Slime Molds,Protosteliomycete,Slime Mold, Plasmodial,Slime Mold, True,True Slime Mold,True Slime Molds
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004227 Dithionite Dithionite. The dithionous acid ion and its salts. Hyposulfite,Sodium Dithionite,Dithionite, Sodium
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

R N Stuchell, and B I Weinstein, and D S Beattie
February 1977, Journal of bioenergetics and biomembranes,
R N Stuchell, and B I Weinstein, and D S Beattie
April 1986, Biochemistry international,
R N Stuchell, and B I Weinstein, and D S Beattie
January 1976, Biochemical Society transactions,
R N Stuchell, and B I Weinstein, and D S Beattie
August 1992, Bulletin of environmental contamination and toxicology,
R N Stuchell, and B I Weinstein, and D S Beattie
July 2003, Biological & pharmaceutical bulletin,
R N Stuchell, and B I Weinstein, and D S Beattie
April 1989, DNA (Mary Ann Liebert, Inc.),
R N Stuchell, and B I Weinstein, and D S Beattie
May 1977, European journal of biochemistry,
R N Stuchell, and B I Weinstein, and D S Beattie
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!